In the postischemic heart, coronary vasodilation is impaired due to loss of endothelial nitric oxide synthase (eNOS) function. Although the eNOS cofactor tetrahydrobiopterin (BH4) is depleted, its repletion only partially restores eNOS-mediated coronary vasodilation, indicating that other critical factors trigger endothelial dysfunction. Therefore, studies were performed to characterize the unidentified factor(s) that trigger endothelial dysfunction in the postischemic heart. We observed that depletion of the eNOS substrate NADPH occurs in the postischemic heart with near total depletion from the endothelium, triggering impaired eNOS function and limiting BH4 rescue through NADPH-dependent salvage pathways. In isolated rat hearts subjected to 30 min of ischemia and reperfusion (I/R), depletion of the NADP(H) pool occurred and was most marked in the endothelium, with >85% depletion. Repletion of NADPH after I/R increased NOS-dependent coronary flow well above that with BH4 alone. With combined NADPH and BH4 repletion, full restoration of NOS-dependent coronary flow occurred. Profound endothelial NADPH depletion was identified to be due to marked activation of the NAD(P)ase-activity of CD38 and could be prevented by inhibition or specific knockdown of this protein. Depletion of the NADPH precursor, NADP(+), coincided with formation of 2'-phospho-ADP ribose, a CD38-derived signaling molecule. Inhibition of CD38 prevented NADP(H) depletion and preserved endothelium-dependent relaxation and NO generation with increased recovery of contractile function and decreased infarction in the postischemic heart. Thus, CD38 activation is an important cause of postischemic endothelial dysfunction and presents a novel therapeutic target for prevention of this dysfunction in unstable coronary syndromes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4577172 | PMC |
http://dx.doi.org/10.1073/pnas.1505556112 | DOI Listing |
Acute myocardial infarction (MI) is a leading cause of death worldwide. Although with current treatment, acute mortality from MI is low, the damage and remodeling associated with MI are responsible for subsequent heart failure. Reducing cell death associated with acute MI would decrease the mortality associated with heart failure.
View Article and Find Full Text PDFInt J Biol Sci
January 2025
Department of Cardiovascular Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China 510120.
Heart Rhythm
December 2024
Department of Neurology, The Chaim Sheba Medical Center, Ramat Gan, Israel; Department of Neurology and Neurosurgery, Faculty of Medicine and Health Sciences, Tel Aviv University, Tel Aviv, Israel; The TELEM Rubin Excellence in Biomedical Research Program, The Chaim Sheba Medical Center, Ramat Gan, Israel. Electronic address:
Cardiovasc Res
December 2024
Faculty of Pharmacy and Pharmaceutical sciences, University of Alberta, Edmonton, AB, Canada.
Aims: Although current clinical therapies following myocardial infarction have improved patient outcomes, morbidity, and mortality rates secondary to ischemic and ischemia reperfusion (IR) injury remains high. Maintaining mitochondrial quality is essential to limit myocardial damage following cardiac ischemia and IR injury. The mitochondrial deacetylase sirtuin 3 (SIRT3) plays a pivotal role in regulating mitochondrial function and cardiac energy metabolism.
View Article and Find Full Text PDFTranspl Int
December 2024
Translational Cardiothoracic Surgery Research Lab, Department of Cardiothoracic Surgery, Erasmus University Medical Center, Rotterdam, Netherlands.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!