Three novel endophytic strains, designated 17B10-2-12T, 26C10-4-4 and D13-10-4-9, were isolated from the bark of Populus euramericana in Heze, Shandong Province, China. They were Gram-reaction-negative, aerobic, non-motile, short-rod-shaped, oxidase-positive and catalase-negative. A phylogenetic analysis of the 16S rRNA gene showed that the three novel strains clustered with members of the family Comamonadaceae and formed a distinct branch. The isolates shared 100 % similarities among themselves and had the highest sequence similarity with Xenophilus azovorans DSM 13620T (95.2 %) and Xenophilus arseniciresistens YW8T (95.0 %), and less than 95.0 % sequence similarities with members of other species. Their major fatty acids were C16 : 0, C17 : 0 cyclo, C18 : 1ω7c and C16 : 1ω7c/C16 : 1ω6c. The major polar lipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and three unknown aminophospholipids. The predominant quinone was ubiquinone-8 (Q-8). The DNA G+C content was 69.5–70.0 mol%. Based on data from a polyphasic taxonomy study, the three strains represent a novel species of a novel genus of the family Comamonadaceae, for which the name Corticibacter populi gen. nov., sp. nov. is proposed. The type strain is 17B10-2-12T ( = CFCC 12099T = KCTC 42091T).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1099/ijsem.0.000418 | DOI Listing |
Life (Basel)
December 2024
Department of Animal Engineering, Yangling Vocational & Technical College, Yangling 712100, China.
Calf diarrhea is a prevalent and significant health issue in dairy farming, severely impacting feed intake, weight gain, and survival rates in young calves. This study aimed to investigate the microbial composition and antibiotic resistance profiles of diarrheic calves to provide insights into the epidemiology and management of the condition. The prevalence of diarrhea in 1685 calves was analyzed.
View Article and Find Full Text PDFEnviron Pollut
January 2025
Divisão de Recursos Microbianos, Centro Pluridisciplinar de Pesquisas Químicas, Biológicas e Agrícolas (CPQBA), Universidade Estadual de Campinas (UNICAMP), CEP 13148-218, Paulínia, SP, Brazil.
The use of biofuel blends with fossil fuels is widespread globally, raising concerns over novel contamination types in environments impacted by these mixtures. This study investigates the microbial functional in soils contaminated by biofuel and fossil fuel blends and subjected to various bioremediation treatments. Using metagenomic analysis, it was compared hydrocarbon degradation functional profiles across areas polluted with ethanol/gasoline and biodiesel/diesel blends.
View Article and Find Full Text PDFEcotoxicol Environ Saf
January 2025
College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; Yuelushan Laboratory, Changsha 410125, China. Electronic address:
Soil heavy metal pollution presents substantial risks to food security and human health. This study focused on the efficiency of plant growth-promoting fungus-Beauveria bassiana FE14 and Miscanthus floridulus on the synergistic remediation of soil Cd contamination. Results revealed that B.
View Article and Find Full Text PDFSci Total Environ
January 2025
State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China; University of Chinese Academy of Sciences, Beijing 100049, China. Electronic address:
There is a major gap in the occurrence of mixed emerging contaminants, which hinders our efforts in exploring their behaviors and transport in environmental media, as well as their toxicity to human and ecosystem. This study assessed the occurrence and their correlations of mixed contamination by microplastics (MPs), per- and polyfluoroalkyl substances (PFASs), antibiotics, and antibiotic resistance genes (ARGs) in groundwater collected from a pharmaceutical and chemical industrial park. MPs, PFASs, antibiotics and ARGs were detected at all monitoring wells.
View Article and Find Full Text PDFWater Res
December 2024
Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China. Electronic address:
Biological activated carbon (BAC) filtration is vital for the abatement of micropollutants in drinking water. However, limited information is available on contaminant removal in BAC filters with aged media (e.g.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!