The anatomic transtibial (TT) technique is proposed as a new approach for single-bundle anterior cruciate ligament (ACL) reconstruction. Geometric models of the anatomic TT and anteromedial (AM) portal techniques were fabricated with a reconstructed knee joint model and virtual surgical operations. Grafts of 7 mm diameter were modeled and inserted into tunnels drilled in each model. In the models, the shape of the graft between the femur and the tibia, the lengths of the bone tunnels, and the femoral graft bending angles were evaluated. To evaluate the biomechanical effects of both techniques on the grafts, the contact pressures and maximum principal stresses in the grafts were calculated using the finite element method. The anatomic TT technique placed the femoral tunnel to the anatomic position of the native ACL femoral attachment site. In addition, it decreased the peak contact pressure and the maximum principal stress at the full extension position of the graft compared with the AM portal technique. The anatomic TT technique may be regarded as a superior surgical technique compared with the conventional TT and AM portal techniques. Because of the easy surgical operation involved, the technique decreases the operation time for ACL reconstruction and it provides a deformation behavior of grafts similar to that in the native ACL in a knee joint. With its few side effects, the anatomic TT technique may considerably help patients.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11517-015-1372-x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!