Low expression of Gria1 and Grin1 glutamate receptors in the nucleus accumbens of Spontaneously Hypertensive Rats (SHR).

Psychiatry Res

Genetics Division, Department of Morphology and Genetics, Universidade Federal de Sao Paulo (UNIFESP), Rua Botucatu, 740, Edifício Leitao da Cunha, 1º andar, CEP 04023-900 São Paulo, Brazil; LiNC - Interdisciplinary Laboratory of Clinical Neurosciences, Department of Psychiatry, UNIFESP, Rua Pedro de Toledo, 669, 3º floor, CEP 05039-032 São Paulo, Brazil. Electronic address:

Published: October 2015

The Spontaneously Hypertensive Rat (SHR) strain is a classical animal model for the study of essential hypertension. Recently, our group suggested that this strain could be a useful animal model for schizophrenia, which is a severe mental illness with involvement of glutamatergic system. The aim of this study is to investigate glutamatergic receptors (Gria1 and Grin1) and glycine transporter (Glyt1) gene expression in the prefrontal cortex (PFC) and nucleus accumbens (NAcc) of SHR animals. The effects in gene expression of a chronic treatment with antipsychotic drugs (risperidone, haloperidol and clozapine) were also analyzed. Animals were treated daily for 30 days, and euthanized for brain tissue collection. The expression pattern was evaluated by Real Time Reverse-Transcriptase (RT) PCR technique. In comparison to control rats, SHR animals present a lower expression of both NMDA (Grin1) and AMPA (Gria1) gene receptors in the NAcc. Antipsychotic treatments were not able to change gene expressions in any of the regions evaluated. These findings provide evidence for the role of glutamatergic changes in schizophrenia-like phenotype of the SHR strain.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.psychres.2015.08.021DOI Listing

Publication Analysis

Top Keywords

gria1 grin1
8
nucleus accumbens
8
spontaneously hypertensive
8
rats shr
8
shr strain
8
animal model
8
gene expression
8
shr animals
8
shr
5
low expression
4

Similar Publications

Article Synopsis
  • The study investigates the potential antianxiety effects of Froriepia subpinnata, a native Iranian plant known for its various health benefits, but previously untested specifically for anxiety.
  • Rats were subjected to chronic stress and treated with varying doses of the plant extract, followed by behavioral tests and analysis of gene expression related to stress response and memory.
  • Results show that the extract improved anxiety and memory performance in stressed rats, impacting the expression of key genes and indicating potential antistress properties alongside cognitive benefits.
View Article and Find Full Text PDF

Introduction: Pubertal maturation is marked by significant changes in stress-induced hormonal responses mediated by the hypothalamic-pituitary-adrenal (HPA) axis, with prepubertal male and female rats often exhibiting greater HPA reactivity compared to adult males and females. Though the implications of these changes are unclear, elevated stress responsiveness might contribute to the stress-related vulnerabilities often associated with puberty.

Methods: The current experiments sought to determine whether differences in cellular activation, as measured by FOS immunohistochemistry, or excitatory ionotropic glutamate receptor subunit expression, as measured by qRT-PCR, in the paraventricular nucleus (PVN) were associated with these noted pubertal shifts in stress reactivity in male and female rats.

View Article and Find Full Text PDF

Consumption of saturated fat-enriched diets during adolescence has been closely associated with the reduction of hippocampal synaptic plasticity and the impairment of cognitive function. Nevertheless, the effect of long-term intake of these foods has not yet been studied. In the present study, we have investigated the effect of a treatment, lasting for 40 weeks, with a diet enriched in saturated fat (SOLF) on i) spatial learning and memory, ii) hippocampal synaptic transmission and plasticity, and iii) hippocampal gene expression levels in aged male and female mice.

View Article and Find Full Text PDF

Rough-and-tumble play in juvenile rats and song in flocks of adult songbirds outside a breeding context (gregarious song) are two distinct forms of non-sexual social behavior. Both are believed to play roles in the development of sociomotor skills needed for later life-history events, including reproduction, providing opportunities for low-stakes practice. Additionally, both behaviors are thought to be intrinsically rewarded and are associated with a positive affective state.

View Article and Find Full Text PDF

Conditional deletion of the AMPA-GluA1 and NMDA-GluN1 receptor subunit genes in midbrain D1 neurons does not alter cocaine reward in mice.

Neuropharmacology

November 2024

Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany. Electronic address:

Synaptic plasticity in the mesolimbic dopamine (DA) system contributes to the neural adaptations underlying addictive behaviors and relapse. However, the specific behavioral relevance of glutamatergic excitatory drive onto dopamine D1 receptor (D1R)-expressing neurons in mediating the reinforcing effect of cocaine remains unclear. Here, we investigated how midbrain AMPAR and NMDAR function modulate cocaine reward-related behavior using mutant mouse lines lacking the glutamate receptor genes Gria1 or Grin1 in D1R-expressing neurons (GluA1 or GluN1, respectively).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!