A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Response of biochemical biomarkers in the aquatic crustacean Daphnia magna exposed to silver nanoparticles. | LitMetric

The proliferation of silver nanoparticle (AgNP) production and use owing to their antimicrobial properties justifies the need to examine the resulting environmental impacts. The discharge of biocidal nanoparticles to water bodies may pose a threat to aquatic species. This study evaluated the effects of citrate-coated AgNPs on the standardized test organism Daphnia magna Straus clone MBP996 by means of biochemical biomarker response. AgNP toxicity was compared against the toxic effect of Ag(+). The toxicity endpoints were calculated based upon measured Ag concentrations in exposure media. For AgNPs, the NOAEC and LOAEC values at 48 h were 5 and 7 μg Ag/L, respectively, while these values were 0.5 and 1 μg Ag/L, respectively, for Ag(+). The EC50 at 48 h was computed to be 12.4 ± 0.6 and 2.6 ± 0.1 μg Ag/L for AgNPs and Ag(+), respectively, with 95 % confidence intervals of 12.1-12.8 and 2.3-2.8 μg Ag/L, respectively. These results indicate significant less toxicity of AgNP compared to free Ag(+) ions. Five biomarkers were evaluated in Daphnia magna neonates after acute exposure to Ag(+) or AgNPs, including glutathione (GSH) level, reactive oxygen species (ROS) content, and catalase (CAT), acetylcholinesterase (AChE), and superoxide dismutase (SOD) activity. AgNPs induced toxicity and oxidative stress responses in D. magna neonates at tenfold higher concentrations than Ag. Biochemical methods revealed a clear increase in AChE activity, decreased ROS level, increased GSH level and CAT activity, but no significant changes in SOD activity. As Ag(+) may dissolve from AgNPs, these two types of Ag could act synergistically and produce a greater toxic response. The observed remarkably high toxicity of AgNPs (in the parts-per-billion range) to crustaceans indicates that these organisms are a vulnerable link in the aquatic food chain with regard to contamination by nanosilver. Graphical Abstract ᅟ.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-015-5201-4DOI Listing

Publication Analysis

Top Keywords

μg ag/l
16
daphnia magna
12
values μg
8
magna neonates
8
gsh level
8
sod activity
8
agnps
7
ag+
6
toxicity
5
response biochemical
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!