The postcentral sulcal complex and the transverse postcentral sulcus and their relation to sensorimotor functional organization.

Eur J Neurosci

Cognitive Neuroscience Unit, Montreal Neurological Institute, McGill University, Montreal, QC, H3A 2B4, Canada.

Published: May 2016

It has been demonstrated that the postcentral sulcus, which forms the posterior boundary of the sensorimotor region, is a complex of distinct sulcal segments. Although the general somatotopic arrangement in the human sensorimotor cortex is relatively well known, we do not know whether the different segments of the postcentral sulcus relate in a systematic way to the sensorimotor functional representations. Participants were scanned with functional magnetic resonance imaging while they made movements of different body parts and the location of functional activity was examined on a subject-by-subject basis with respect to the morphological features of the postcentral sulcus. The findings demonstrate that the postcentral sulcus of each subject may be divided into five segments and there is a tight relationship between sensorimotor representations of different body parts and specific segments of the postcentral sulcus. The results also addressed the issue of the transverse postcentral sulcus, a short sulcus that is present within the ventral part of the postcentral gyrus in some brains. It was shown that, when present, this sulcus is functionally related to the oral (mouth and tongue) sensorimotor representation. When this sulcus is not present, the inferior postcentral sulcus which is also related to the oral representation is longer. Thus, the sulcal morphology provides an improved framework for functional assignments in individual subjects.

Download full-text PDF

Source
http://dx.doi.org/10.1111/ejn.13049DOI Listing

Publication Analysis

Top Keywords

postcentral sulcus
32
sulcus
11
postcentral
10
transverse postcentral
8
sensorimotor functional
8
segments postcentral
8
body parts
8
sensorimotor
6
functional
5
postcentral sulcal
4

Similar Publications

Amygdala-centered fusional connections characterized nonmotor symptoms in Parkinson's disease.

Cereb Cortex

January 2025

The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Mathematical Sciences, University of Electronic Science and Technology of China, No. 2006, Xiyuan Ave, West Hi-Tech Zone, Chengdu 611731, P. R. China.

The importance of nonmotor symptoms in understanding the pathogenesis of the heterogeneity of Parkinson's disease has been highlighted. However, the validation of specific brain network biomarkers in nonmotor symptom subtypes is currently lacking. By performing a new approach to compute functional connectivity with structural prior using magnetic resonance imaging, the present study computed both functional connectivity and fusional connectivity features in the nonmotor symptom subtypes of Parkinson's disease, one characterized by cognitive impairment with late onset and the other depression with early onset.

View Article and Find Full Text PDF

Objective: The leptomeningeal ivy sign is a distinctive finding of moyamoya disease (MMD), characterized by a linear high signal intensity along the cortical sulci on contrast-enhanced T1 magnetic resonance imaging (MRI) and fluid-attenuated inversion-recovery MRI. We recently identified a similar linear enhancement along the cortical sulci using gadolinium-enhanced vessel wall MRI (VWMR) in patients with MMD. The aim of this study was to introduce the concept of the "VWMR ivy sign (VIS)".

View Article and Find Full Text PDF

Altered surface-based brain morphometry in type 1 diabetes and neuropathic pain.

Neuroscience

February 2025

Radiology Research Center, Department of Radiology, Aalborg University Hospital, Aalborg, Denmark; Department of Clinical Medicine, Aalborg University, Aalborg, Denmark. Electronic address:

This study explored surface brain morphometry in type 1 diabetes including focus on painful diabetic peripheral neuropathy (DPN). Brain MRI was obtained from 56 individuals with diabetes (18 without DPN, 19 with painless DPN, 19 with painful DPN) and 20 healthy controls. Cortical thickness, sulcus depth, and gyrification were analysed globally and regionally in each group and in the combined diabetes group.

View Article and Find Full Text PDF

Objective: To compare structural alterations in the brains of Meige syndrome (MS) patients with those of healthy controls (HCs) by using surface-based morphometry (SBM) and compare structural differences between the brains of MS patients with sleep disorders and those of MS patients without sleep disorders.

Methods: We investigated cortical surface parameters in 42 MS patients and 30 HCs. T1-weighted images were acquired and processed using CAT12 to perform vertexwise between-group comparisons of cortical thickness, gyrification, cortical complexity and sulcus depth with validated quality control protocols.

View Article and Find Full Text PDF

Parietofrontal Networks Mediate Contextual Influences in the Appraisal of Pain and Disgust Facial Expressions.

J Neurosci

January 2025

Theory of Pain Laboratory, Department of Psychology, Faculty of Psychology and Educational Sciences (FPSE), University of Geneva, Geneva 1202, Switzerland.

We appraise other people's emotions by combining multiple sources of information, including somatic facial/body reactions and the surrounding context. Wealthy literature revealed how people take into account contextual information in the interpretation of facial expressions, but the mechanisms mediating such influence still need to be duly investigated. Across two experiments, we mapped the neural representations of distinct (but comparably unpleasant) negative states, pain, and disgust, as conveyed by naturalistic facial expressions or contextual sentences.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!