Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Benchmark calculations of the lowest ionized state of the (A:T)2 (mixed adenine-thymine) cluster at the geometry taken from the DNA X-ray structure are presented. Vertical ionization energies (IEs) computed by the equation-of-motion coupled-cluster method with single and double substitutions are reported and analyzed. The shift in IE relative to the monomer (A) is -0.7 eV. The performance of the widely used B3LYP, ωB97X-D, and M06-2X functionals with respect to their ability to describe energetics and the character (localization versus delocalization) of the ionized states is also investigated. The shifts in IEs caused by H-bonding and stacking interactions are analyzed in terms of additive versus cooperative effects. It is found that the cooperative effect accounts for more than 20% of the shift in IE relative to the monomer. The cooperative effect and, consequently, the magnitude of the shift are well reproduced by the hybrid quantum mechanics/molecular mechanics scheme in which neutral thymine bases are represented by point charges.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jz3011139 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!