Compressed sensing is a processing method that significantly reduces the number of measurements needed to accurately resolve signals in many fields of science and engineering. We develop a two-dimensional variant of compressed sensing for multidimensional spectroscopy and apply it to experimental data. For the model system of atomic rubidium vapor, we find that compressed sensing provides an order-of-magnitude (about 10-fold) improvement in spectral resolution along each dimension, as compared to a conventional discrete Fourier transform, using the same data set. More attractive is that compressed sensing allows for random undersampling of the experimental data, down to less than 5% of the experimental data set, with essentially no loss in spectral resolution. We believe that by combining powerful resolution with ease of use, compressed sensing can be a powerful tool for the analysis and interpretation of ultrafast spectroscopy data.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jz300988p | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!