Epilepsy is one of the most common neurological disorders in humans, and the role of cerebellum in its physiopathology remains the subject of study. Bergmann glia in the cerebellar cortex regulates the homeostasis of Purkinje cells, the axons of which target the dentate and interpositus nuclei, which form the main cerebellar output to other structures in the central nervous system involved in Epilepsy. Sox-1 is a transcription factor expressed in Bergmann glia and its binding to β-Catenin further inhibits the Wnt pathway. β-Catenin is widely expressed in cerebellum. It has been reported that β-Catenin signaling is increased as the hippocampus receives repeated electrical stimuli and this is related with apoptosis of neurons. In the cerebellum, the recurrence of seizures results in Purkinje cells death, although the mechanisms remain unclear.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2174/1871527314666150821105001 | DOI Listing |
J Neuroinflammation
January 2025
Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
Background: Traumatic brain injury (TBI) is characterized by high mortality and disability rates. Disease-associated microglia (DAM) are a newly discovered subtype of microglia. However, their presence and function in the acute phase of TBI remain unclear.
View Article and Find Full Text PDFJ Prev Alzheimers Dis
January 2025
School of Health and Biomedical Sciences, RMIT University, 220 3-5 Plenty Road, Bundoora VIC 3082, Australia. Electronic address:
Alzheimer's Disease (AD) is a chronic neurodegenerative disorder characterized by the accumulation of toxic amyloid-beta (Aβ) plaques and neurofibrillary tangles (NFTs) of tau protein in the brain. Microglia, key immune cells of the central nervous system, play an important role in AD development and progression, primarily through their responses to Aβ and NFTs. Initially, microglia can clear Aβ, but in AD, chronic activation overwhelms protective mechanisms, leading to sustained neuroinflammation that enhances plaque toxicity, setting off a damaging cycle that affects neurons, astrocytes, cerebral vasculature, and other microglia.
View Article and Find Full Text PDFJ Transl Med
January 2025
Division of Spine, Department of Orthopedics, Tongji Hospital affiliated to Tongji University, Tongji University School of Medicine, Shanghai, 200065, China.
Background: Ferroptosis and immune responses are critical pathological events in spinal cord injury (SCI), whereas relative molecular and cellular mechanisms remain unclear.
Methods: Micro-array datasets (GSE45006, GSE69334), RNA sequencing (RNA-seq) dataset (GSE151371), spatial transcriptome datasets (GSE214349, GSE184369), and single cell RNA sequencing (scRNA-seq) datasets (GSE162610, GSE226286) were available from the Gene Expression Omnibus (GEO) database. Through weighted gene co-expression network analysis and differential expression analysis in GSE45006, we identified differentially expressed time- and immune-related genes (DETIRGs) associated with chronic SCI and differentially expressed ferroptosis- and immune-related genes (DEFIRGs), which were validated in GSE151371.
Transl Psychiatry
January 2025
Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, Guangdong, China.
Repeated closed-head injuries (rCHI) from activities like contact sports, falls, military combat, and traffic accidents pose a serious risk due to their cumulative impact on the brain. Often, rCHI is not diagnosed until symptoms of irreversible brain damage appear, highlighting the need for preventive measures. This study assessed the prophylactic efficacy of remote photobiomodulation (PBM) targeted at the lungs against rCHI-induced brain injury and associated behavioral deficits.
View Article and Find Full Text PDFJ Neuroimmune Pharmacol
January 2025
Pharmacy Department, Baotou Central Hospital, Baotou, 014040, Inner Mongolia, China.
Microglial polarization and ferroptosis are important pathological features in Alzheimer's disease (AD). Ghrelin, a brain-gut hormone, has potential neuroprotective effects in AD. This study aimed to explore the potential mechanisms by which ghrelin regulates the progression of AD, as well as the crosstalk between microglial polarization and ferroptosis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!