The conjugate base of para-coumaric acid, which can be conveniently generated in the gas phase by electrospray ionization (ESI), is a commonly used model system for the chromophore of the photoactive yellow protein. Here we report its gas-phase IR spectrum, which shows that the anion easily adopts a carboxylate structure lying 60 kJ/mol higher in energy than the global minimum phenoxide structure. Generation of the biologically more relevant phenoxide isomer by ESI can be achieved using dry acetonitrile as solvent.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jz300780t | DOI Listing |
J Phys Chem Lett
December 2024
Theoretical Chemistry Group, Molecular Chemistry, Materials and Catalysis Division (MOST), Institute of Condensed Matter and Nanosciences, Université Catholique de Louvain, Place Louis Pasteur 1, B-1348 Louvain-la-Neuve, Belgium.
Simplified quantum chemistry (sQC) methods can routinely compute excited states for very large systems in an "all-atom" fashion. They are viable alternatives to regular multiscale schemes. sQC methods have the advantage of accounting explicitly for all of the environment at a quantum mechanical (QM) level.
View Article and Find Full Text PDFIUCrJ
January 2025
Department of Physics, University of Wisconsin-Milwaukee, Milwaukee, USA.
The upgrade of the European Synchrotron Radiation Facility (ESRF) in Grenoble, France to an Extremely Brilliant Source (EBS) is expected to enable time-resolved synchrotron serial crystallography (SSX) experiments with sub-millisecond time resolution. ID29 is a new beamline dedicated to SSX experiments at ESRF-EBS. Here, we report experiments emerging from the initial phase of user operation at ID29.
View Article and Find Full Text PDFCell Stem Cell
January 2025
Jinan Microecological Biomedicine Shandong Laboratory, Jinan 250021, China; Chemistry and Biomedicine Innovation Center (ChemBIC), ChemBioMed Interdisciplinary Research Center at Nanjing University, Department of Physics, Nanjing University, Nanjing 210093, China; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China. Electronic address:
Cells use traction forces to sense mechanical cues in their environment. While the molecular clutch model effectively explains how cells exert more forces on stiffer substrates, it falls short in addressing their adaptation to dynamic mechanical fluctuations prevalent in tissues and organs. Here, using hydrogel with photo-responsive rigidity, we show that cells' response to rigidity changes is frequency dependent.
View Article and Find Full Text PDFChem Commun (Camb)
October 2024
Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!