A practical yet accurate dispersion model for the molecular first hyperpolarizability β is presented, incorporating both homogeneous and inhomogeneous line broadening because these affect the β dispersion differently, even if they are indistinguishable in linear absorption. Consequently, combining the absorption spectrum with one free shape-determining parameter Ginhom, the inhomogeneous line width, turns out to be necessary and sufficient to obtain a reliable description of the β dispersion, requiring no information on the homogeneous (including vibronic) and inhomogeneous line broadening mechanisms involved, providing an ideal model for practical use in extrapolating experimental nonlinear optical (NLO) data. The model is applied to the efficient NLO chromophore picolinium quinodimethane, yielding an excellent fit of the two-photon resonant wavelength-dependent data and a dependable static value β0 = 316 × 10(-30) esu. Furthermore, we show that including a second electronic excited state in the model does yield an improved description of the NLO data at shorter wavelengths but has only limited influence on β0.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jz300922r | DOI Listing |
J Chem Phys
December 2024
Chemistry Division, U. S. Naval Research Laboratory, 4555 Overlook Ave SW, Washington, District of Columbia 20375, USA.
Significant debate surrounds the origin of nonlinear optical responses from cavity-coupled molecular vibrations. Several groups, including our own, have previously assigned portions of the nonlinear response to polariton excited-state transitions. Here, we report a new method to approximate two-dimensional infrared spectra under vibrational strong coupling, which properly accounts for inhomogeneous broadening.
View Article and Find Full Text PDFJ Chem Phys
December 2024
Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan.
Based on our previous study [Wang et al., J. Chem.
View Article and Find Full Text PDFNanophotonics
April 2024
Department of Physics, Korea University, Seoul, 02841, South Korea.
Guided exciton-polariton modes naturally exist in bare transition metal dichalcogenide (TMDC) layers due to self-hybridization between excitons and photons. However, these guided polariton modes exhibit a limited propagation distance owing to the substantial exciton absorption within the material. Here, we investigated the impact of hexagonal boron nitride (hBN) layers on guided exciton-polariton modes in WS multilayers.
View Article and Find Full Text PDFJ Membr Biol
December 2024
Faculty of Science, Department of Physics, Ege University, 35100, Bornova, Izmir, Turkey.
J Magn Reson
December 2024
UNB MRI Research Centre, Department of Physics, University of New Brunswick, Fredericton, New Brunswick E3B 5A3, Canada. Electronic address:
Multinuclear H, C, and Na magnetic resonance (MR) has many advantages for studying porous media systems containing hydrocarbons and brine. In recent work, we have explored changing the nucleus measured, keeping the Larmor frequency constant, by changing the static magnetic field B. Increasing the static B field distorts the field in the pore space due to susceptibility mismatch between the matrix and pore fluid.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!