A New Class of Ionic Liquids: Anion Amphiprotic Ionic Liquids.

J Phys Chem Lett

†Department of Applied Physics, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden.

Published: August 2012

We here present a new class of protic ionic liquids, anion amphiprotic ionic liquids (AAILs). These materials are protonation equilibrium free protic ionic liquids and interesting in their own right by not following the classical Brønsted acid-base neutralization concept. Due to the very simple synthesis route applied and their stable basic chemistry, we believe in a potential use for manifold applications. This is supported by the combination of practical material properties, foremost, a general intrinsic stability versus reversal of the formation reaction toward neutral species, broad liquidus ranges, long-term thermal stabilities, high conductivities, protic characteristics, and a general stability versus water.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jz300752uDOI Listing

Publication Analysis

Top Keywords

ionic liquids
20
liquids anion
8
anion amphiprotic
8
amphiprotic ionic
8
protic ionic
8
stability versus
8
liquids
5
class ionic
4
ionic
4
liquids class
4

Similar Publications

In this study, the dispersion behavior of MoS₂ in ionic liquids (ILs) with varying alkyl chain lengths was the primary focus of investigation, followed by the design of a novel PAM/SMA/CMC/PDA@MoS hydrogel. By optimizing the concentrations of CMC and PDA@MoS, a bifunctional hydrogel with both sensing and catalytic functions was successfully developed. Mechanical tests revealed that the PAM/SMA/CMC/0.

View Article and Find Full Text PDF

The study reports solid-state ceramic supercapacitors (SSCs) assembled using a novel composite electrolyte based on Li ion conducting perovskite-type LLTO (LiLaTiO) and an ionic liquid (EMIM BF). Small amounts of various ionic liquids (ILs) were added to LLTO to enhance the ionic conductivity and improve electrode compatibility. The optimal composition with approximately ∼6 wt% EMIM BF in LLTO exhibited a high ionic conductivity of around ∼10 Ω cm at room temperature, nearly three orders of magnitude higher than that of the pristine LLTO.

View Article and Find Full Text PDF

Exploring Biophysical and Chemoinformatics Approaches for Interactions of Ionic Liquids with Hemoglobin, DNA, BSA, and HSA.

Chem Biodivers

January 2025

SRM Institute of Science and Technology - NCR Campus, chemistry, Department of Chemistry, SRM Institute of Science and Technology, Delhi NCR Camp, India, 241405, Modinagar, INDIA.

This review paper provides an inclusive overview of the intricate interactions amid ionic liquids (ILs) and essential biomacromolecules, mainly Hemoglobin (Hb), Bovine Serum Albumin (BSA), Human Serum Albumin (HSA), and Calf Thymus-DNA (CT-DNA). ILs have recently become a topic of great attention because of their inimitable physicochemical properties and potential uses in different fields. The review systematically explores the binding mechanisms, thermodynamics, and structural changes induced by ILs on Hb, BSA, HSA, and CT-DNA using spectroscopic, thermodynamic, and computational techniques.

View Article and Find Full Text PDF

A pair of axially chiral thermally activated delayed fluorescent (TADF) enantiomers, R-TCBN-ImEtPF6 and S-TCBN-ImEtPF6, with intrinsic ionic characteristics were efficiently synthesized by introducing imidazolium hexafluorophosphate to chiral TADF unit. The TADF imidazolium salts exhibited a high photoluminescence quantum yield (PLQY) of up to 92%, a small singlet-triplet energy gap (∆EST) of 0.04 eV, as well as reversible redox properties.

View Article and Find Full Text PDF

Thermodynamic regulation of carbon dioxide capture by functionalized ionic liquids.

Chem Soc Rev

January 2025

Department of Chemistry, Center of Chemistry for Frontier Technologies, Zhejiang University, Hangzhou 310027, China.

Carbon dioxide capture has attracted worldwide attention because CO emissions cause global warming and exacerbate climate change. Ionic liquids (ILs) have good application prospects in carbon capture due to their excellent properties, which provide a new chance to develop efficient and reversible carbon capture systems. This paper reviews the recent progress in CO chemical absorption by ILs, such as N-site, O-site, C-site, and multi-site functionalized ILs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!