Employing a Photosynthetic Antenna Complex to Interfacial Electron Transfer on ZnO Quantum Dot.

J Phys Chem Lett

†Radiation and Photochemistry Division and ‡Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, 400085, India.

Published: April 2011

Photosynthetic antenna complexes exhibit unidirectional energy-transport phenomena, which make them potential photosensitizers in interfacial electron-transfer processes. In the present study, we show the antenna function of phycocyanin-allophycocyanin (PC-APC) complex using transient emission and absorption spectroscopy. Interfacial electron-transfer dynamics in the PC-APC complex sensitized ZnO semiconductor quantum dot material is compared in native and denatured conditions. The downhill sequential energy transfer from a peripheral phycocyanin disk to a core allophycocyanin disk opens a new electron injection pathway from the allophycocyanin disk in addition to primary electron injection from directly photoexcited phycocyanin disk. Further, the large association of phycocayanobilin chromophores in PC-APC conjugates stabilizes the positive charge within the sensitizer, which leads to slower charge recombination in comparison to that in denatured condition. This study displays the antenna function of energy-efficient biomolecules in favor of better charge separation across the semiconductor interface.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jz2002474DOI Listing

Publication Analysis

Top Keywords

photosynthetic antenna
8
quantum dot
8
interfacial electron-transfer
8
antenna function
8
pc-apc complex
8
phycocyanin disk
8
allophycocyanin disk
8
electron injection
8
employing photosynthetic
4
antenna
4

Similar Publications

Salt stress is a significant environmental factor that impedes maize growth and yield. Exogenous 5-aminolevulinic acid (ALA) has been shown to mitigate the detrimental effects of various environmental stresses on plants. However, its regulatory role in the photosynthesis mechanisms of maize seedlings under salt stress remains poorly understood.

View Article and Find Full Text PDF

Photosynthesis, which is the foundation of crop growth and development, is accompanied by complex transcriptional regulatory mechanisms. Research has established that brassinosteroids (BRs) play a role in regulating plant photosynthesis, with the majority of research focusing on the physiological level and regulation of rate-limiting enzymes in the dark reactions of photosynthesis. However, studies on their effects on maize photosynthesis, specifically on light-harvesting antenna proteins, have yet to be conducted.

View Article and Find Full Text PDF

Long-lasting and controlled-release borate as a biocide against microbial breeding in a recirculating cooling water system.

Sci Total Environ

January 2025

State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China; The Key Laboratory of Water and Sediment Sciences, Ministry of Education, School of Environment, Beijing Normal University, Beijing 100875, China.

Based on the potential bactericidal properties of borate, we synthesized controlled-release borate (CRB) as a novel biocide to inhibit microbial proliferation in a recirculating cooling water system (RCS). In this study, toxicity experiments of CRB were conducted on the dominant bacteria and algae isolated from an actual RCS. The effects of CRB on biocidal performance and genotoxicity were evaluated in a simulated RCS.

View Article and Find Full Text PDF

Exogenous 2,4-Epibrassinolide Alleviates Alkaline Stress in Cucumber by Modulating Photosynthetic Performance.

Plants (Basel)

December 2024

Stage Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, China.

Brassinosteroids (BRs) are recognized for their ability to enhance plant salt tolerance. While considerable research has focused on their effects under neutral salt conditions, the mechanisms through which BRs regulate photosynthesis under alkaline salt stress are less well understood. This study investigates these mechanisms, examining plant growth, photosynthetic electron transport, gas exchange parameters, Calvin cycle dynamics, and the expression of key antioxidant and Calvin cycle genes under alkaline stress conditions induced by NaHCO.

View Article and Find Full Text PDF

Harnessing nature's palette: Exploring photosynthetic pigments for sustainable biotechnology.

N Biotechnol

January 2025

Institute of Sustainable Processes, University of Valladolid, Dr. Mergelina s/n, Valladolid 47011, Spain; Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina s/n, Valladolid 47011, Spain. Electronic address:

Photosynthetic microorganisms such as cyanobacteria, microalgae, and anoxygenic phototrophic bacteria (APB) have emerged as sustainable and economic biotechnology platforms due to their ability to transform energy from light into chemicals through photosynthesis. The light is absorbed by photosynthetic pigment-protein antenna complexes which are composed of pigments such as bacteriochlorophylls (BChl) and carotenoids in APB, and chlorophylls (Chl), phycobiliproteins (PBP), and carotenoids in cyanobacteria and microalgae. These photosynthetic pigments are essential in the physiology of photosynthetic microorganisms and offer significant health benefits due to their potent antioxidant activity, with properties that include anticancer, antiaging, antiproliferative, anti-inflammatory, and neuroprotective effects.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!