We report on the nanoscale optical characterization of gold nanorods irradiated out of their plasmonic resonance. Our approach is based on the reticulation of a photopolymerizable formulation locally triggered by enhanced electromagnetic fields. The tiny local field enhancement stems from the surface polarization charges associated with the electric field discontinuity at the metal/dielectric interface. This allows us to get a nanoscale signature of the spatial distribution of the surface charge density in metallic nanoparticles irradiated off-resonance.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jz1014696DOI Listing

Publication Analysis

Top Keywords

gold nanorods
8
surface charge
8
off-resonant optical
4
optical excitation
4
excitation gold
4
nanorods nanoscale
4
nanoscale imprint
4
imprint polarization
4
polarization surface
4
charge distribution
4

Similar Publications

Effective multicolor visual biosensor for ochratoxin A detection enabled by DNAzyme catalysis and gold nanorod etching.

Mikrochim Acta

December 2024

Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China.

A novel detection technique is introduced that offers sensitive and reliable ochratoxin A (OTA) detection. The method leverages the etching of gold nanorods (AuNRs) stabilized by hexadecyl trimethyl ammonium bromide (CTAB) using the oxidized form of 3,3',5,5'-tetramethyl benzidine sulfate (TMB), creating a susceptible multicolor visual detection system for OTA. The visual detection is enabled by Mg-assisted DNAzyme catalysis combined with the catalytic hairpin assembly (CHA) signal amplification strategy.

View Article and Find Full Text PDF

Bacterial infections can lead to severe complications that adversely affect wound healing. Thus, the development of effective wound dressings has become a major focus in the biomedical field, as current solutions remain insufficient for treating complex, particularly chronic wounds. Designing an optimal environment for healing and tissue regeneration is essential.

View Article and Find Full Text PDF

Nanoparticles have been of significant interest in various biomedical domains such as drug delivery, gene delivery, cytotoxicity analysis, and imaging. Despite the synthesis of a variety of nanoparticles, their cellular uptake efficiency remains a substantial obstacle, with only a small fraction of delivered nanoparticles (NPs) have been reported to traverse the cell membrane within 24 h. Consequently, higher doses are often necessitated, leading to increased toxicity concerns.

View Article and Find Full Text PDF

Redox/NIR dual-responsive glutathione extended polyurethane urea electrospun membranes for synergistic chemo-photothermal therapy.

Int J Pharm

December 2024

Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, Palermo, Italy; Istituto per la Ricerca e Innovazione Biomedica (IRIB), CNR, Via Ugo La Malfa, 153, 90146, Palermo, Italy. Electronic address:

Despite advancements in cancer treatments, therapies frequently exhibit high cytotoxicity, and surgery remains the predominant method for treating most solid tumors, often with limited success in preventing post-surgical recurrence. Implantable biomaterials, designed to release drugs at a localised site in response to specific stimuli, represent a promising approach for enhancing tumour therapy. In this study, a redox-responsive glutathione extended polyurethane urea (PolyCEGS) was used to produce paclitaxel (PTX) and gold nanorods (AuNRs) loaded electrospun membranes for combined redox/near-infrared (NIR) light-responsive release chemotherapy and hyperthermic effect.

View Article and Find Full Text PDF

Intrinsic Chirality Modulation and Biosensing Application of Helical Gold Nanorods by Anisotropic Etching.

Anal Chem

December 2024

Key Laboratory of Biomedical Analytics (Southwest University), Chongqing Science and Technology Bureau, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, P. R. China.

The investigation of plasmonic chirality is a profound and intriguing topic, and the distinctive morphology of intrinsically chiral nanoparticles has prompted significant interest in the structure-activity relationship between particle morphology and chirality. In this work, the anisotropic etching of chiral helical gold nanorods (HGNRs) by a cetyltrimethylammonium bromide (CTAB)-HAuCl complex was observed with an interesting bidirectional variation of intrinsic chirality that initially enhanced and subsequently weakened, which was related with the diversity in CTAB distribution. In addition, an ultrasensitive and convenient sensing platform for acetylcholinesterase was developed based on the circular dichroism signal recovery of HGNRs caused by the dual inhibition of HGNR etching.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!