In a swine model of ischemia/reperfusion injury coupled with sepsis, we have previously shown attenuation of secondary organ injury and decreased mortality with negative pressure therapy (NPT). We hypothesized that NPT modulates the intestinal microenvironment by mediating the innate immune system. Sepsis was induced in 12 anesthetized female pigs. Group 1 (n = 6) was decompressed at 12 hrs after injury (T 12) and treated with standard of care (SOC), and group 2 (n = 6) with NPT for up to T 48. Immunoparalysis was evident as lymphocytopenia at T 24 in both groups; however, survival was improved in the NPT group versus SOC (Odds ratio = 4.0). The SOC group showed significant reduction in lymphocyte numbers compared to NPT group by T 48 (p < 0.05). The capacity of peritoneal fluid to stimulate a robust reactive oxygen species response in vitro was greater for the NPT group, peaking at T 24 for both M1 (p = 0.0197) and M2 macrophages (p = 0.085). Plasma elicited little if any effect which was confirmed by microarray analysis. In this septic swine model NPT appeared to modulate the intestinal microenvironment, facilitating an early robust, yet transient, host defense mediated by M1 and M2 macrophages. NPT may help overcome immunoparalysis that occurs during inflammatory response to septic injury.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4534613PMC
http://dx.doi.org/10.1155/2015/419841DOI Listing

Publication Analysis

Top Keywords

intestinal microenvironment
12
npt group
12
negative pressure
8
pressure therapy
8
inflammatory response
8
swine model
8
npt
8
soc group
8
group
6
therapy inflammatory
4

Similar Publications

Background: Lately, significant attention has been drawn towards the potential efficacy of cholera toxin (CT)-an exotoxin produced by the small intestine pathogenic bacterium Vibrio cholera-in modulating cancer-promoting events. In a recent study, we demonstrated that early-life oral administration of non-pathogenic doses of CT in mice suppressed chemically-induced carcinogenesis in tissues distantly located from the gut. In the mammary gland, CT pretreatment was shown to reduce tumor multiplicity, increase apoptosis and alter the expression of several cancer-related molecules.

View Article and Find Full Text PDF

Inflammatory bowel disease is a chronic condition characterized by inflammation of the gastrointestinal tract, resulting from an abnormal immune response to normal stimuli, such as food and intestinal flora. Since the etiology of this disease remains largely unknown, murine models induced by the consumption of dextran-sodium sulfate serve as a pivotal tool for studying colon inflammation. In this study, we employed both acute and chronic colitis mouse models induced by varying durations of dextran-sodium sulfate consumption to investigate the pathological and immunologic characteristics throughout the disease course.

View Article and Find Full Text PDF

Experimental Research Progress of mPGES-1 Inhibitor 2,5-Dimethylcelecoxib in Various Diseases.

Curr Med Chem

January 2025

Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, China.

Prostaglandin E2 (PGE2) plays a crucial role in inflammation. Non-steroidal anti-inflammatory medications are commonly utilized to alleviate pain and address inflammation by blocking the production of PGE2 and cyclooxygenase (COX). However, selective inhibition of COX can easily lead to a series of risks for cardiovascular diseases.

View Article and Find Full Text PDF

Upon stimulation and activation, mast cells (MCs) release soluble mediators, including histamine, proteases, and cytokines. These mediators are often stored within cytoplasmic granules in MCs and may be released in a granulated form. The secretion of cytokines and chemokines occurs within hours following activation, with the potential to result in chronic inflammation.

View Article and Find Full Text PDF

Aims: The gastrointestinal (GI) tract is composed of distinct sub-regions, which exhibit segment-specific differences in microbial colonization and (patho)physiological characteristics. Gut microbes can be collectively considered as an active endocrine organ. Microbes produce metabolites, which can be taken up by the host and can actively communicate with the immune cells in the gut lamina propria with consequences for cardiovascular health.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!