Background: Experiments on the electromagnetic field influence on organisms are an important part of biophysical studies. It is an interdisciplinary research spanning biology and medicine with the engineering in generation and measurement of electromagnetic fields. The aim of the study consists the analysis of parameters estimations and measurements of extremely low frequency magnetic field (ELF MF) as well as exposure systems parameters in biomedical research.

Material And Methods: Experiments were performed on 2 most popular low magnetic field exposure systems: the solenoid and Helmholtz coils. A theoretical analysis and a measurement verification of the magnetic field distribution inside the systems were carried out to evaluate the homogeneity of the magnetic field. Additional factors, vibrations and temperature changes, affecting the assessment of the biological effects of magnetic field exposure were also examined.

Results: Based on the study results, a comparative analysis of solenoids and Helmholtz coils as the magnetic field exposure systems was presented. Proposals for the description of magnetic field exposure were also formulated.

Conclusions: The authors emphasize the importance of a conscious choice of exposure conditions and their explicit description. These are fundamental requirements for both the reproduction of experiniental conditions and the verification of results.

Download full-text PDF

Source
http://dx.doi.org/10.13075/mp.5893.00164DOI Listing

Publication Analysis

Top Keywords

magnetic field
28
field exposure
16
exposure systems
12
magnetic
8
extremely low
8
field
8
helmholtz coils
8
exposure
7
[technical aspects
4
aspects exposure
4

Similar Publications

Metabolite identification from 1D H NMR spectra is a major challenge in NMR-based metabolomics. This study introduces NMRformer, a Transformer-based deep learning framework for accurate peak assignment and metabolite identification in 1D H NMR spectroscopy. Unlike traditional approaches, NMRformer interprets spectra as sequences of spectral peaks and integrates a self-attention mechanism and peak height ratios directly into the Transformer encoder layer.

View Article and Find Full Text PDF

Colloids can be used either as model systems for directed assembly or as the necessary building blocks for making functional materials. Previous work primarily focused on assembling colloids under a single external field, where controlling particle-particle interactions is limited. This work presents results under a combination of electric and magnetic fields.

View Article and Find Full Text PDF

Pancreatic ductal adenocarcinoma (PDAC) is a very challenging disease with a very poor prognosis. It is characterized by a dense desmoplastic stroma that hampers drug penetration and limits the effectiveness of conventional chemotherapy (CT). As an alternative, the combination of CT with hyperthermia (HT) has been proposed as an innovative treatment modality for PDAC.

View Article and Find Full Text PDF

An Integrated, Portable, and Automatic Digital Detection System for Hepatitis B Virus Using Hybrid Magnetic System.

Small Methods

January 2025

College of Control Science and Engineering, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou, Zhejiang Province, 310027, China.

The rapid, precise, and automated diagnosis of infectious diseases is crucial for effective disease management and control. Herein, the integrated portable and automatic digital detection system (IPADS), a novel diagnostic platform for nucleic acid detection is introduced. The device employs the hybrid magnetic system (HMS), which uses an electromagnet and a movable permanent magnet to modulate the magnetic field and control bead movement, increasing nucleic acid extraction efficiency to over 80%, while simplifying the traditional labor-intensive process and enabling quick, low-risk sample processing.

View Article and Find Full Text PDF

Emergence of synchronization-induced patterns in two-dimensional magnetic rod systems under rotating magnetic fields.

Soft Matter

January 2025

Departamento de Física, Universidade Federal do Ceará, Caixa Postal 6030, 60455-760 Fortaleza, Ceará, Brazil.

We investigate the dynamics of two-dimensional assemblies of rod-shaped magnetic colloids under the influence of an external rotating magnetic field. Using molecular dynamics, we simulate the formation of patterns that emerge based on the synchronization degree between the magnetic rods and the rotating field. We then explore the structural and dynamic characteristics of the resulting steady states, examining their evolution as a function of changes in the rods' aspect ratio, the strength of the external magnetic field, and its rotation frequency.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!