A new small molecule inhibits Streptococcus mutans biofilms in vitro and in vivo.

J Appl Microbiol

The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-Most) & Key Laboratory for Oral Biomedical Engineering of Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China.

Published: November 2015

Aims: The aim of this study was to identify new small molecules that can inhibit Streptococcus mutans biofilms by in vitro and in vivo model.

Methods And Results: We evaluated the effect of a small molecule 2-amino-imidazole/triazole conjugate (2-AI/T) on the formation of Strep. mutans biofilms by culturing in 96-well plates. Toxicity was assessed through cell culture and intragastrically administering to mice. The anti-biofilm and anti-caries effects were investigated in vivo. The inhibitive mechanism was detected by isobaric tag for relative and absolute quantification (itraq) and RT-QPCR. In vitro and in vivo study revealed that 2-AI/T significantly inhibited biofilm formation of Strep. mutans and is more so than inhibiting planktonic cells without toxicity. The ribosome and histidine metabolism pathways of Strep. mutans were significantly regulated by this compound.

Conclusions: These results suggest that the 2-AI/T conjugate is a potent inhibitor that can be potentially developed into a new drug to treat and prevent dental caries.

Significance And Impact Of The Study: This is the first study to use small molecule from marine natural products, to protect from dental caries in vivo. It has potential broad range application in clinical caries prevention, or as a bioactive ingredient for food applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4633698PMC
http://dx.doi.org/10.1111/jam.12940DOI Listing

Publication Analysis

Top Keywords

small molecule
12
mutans biofilms
12
vitro vivo
12
strep mutans
12
streptococcus mutans
8
biofilms vitro
8
formation strep
8
mutans
5
vivo
5
small
4

Similar Publications

Amyloid fibrils have recently emerged as promising building blocks for functional materials due to their exceptional physicochemical stability and adaptable properties. These protein-based structures can be functionalized to create hybrid materials with a diverse range of applications. Here we report a simple eco-friendly protocol for generating amyloid fibrils from hen egg white lysozyme decorated with gold nanoparticles that can self-assemble in a hydrogel.

View Article and Find Full Text PDF

Unlabelled: Porcine reproductive and respiratory syndrome (PRRS) remains a major threat to animal health and causes substantial economic losses worldwide. The nonstructural protein 11 (NSP11) of the causative agent, PRRS virus (PRRSV), contains a highly conserved nidoviral uridylate-specific endoribonuclease (NendoU) domain essential for viral replication and immune evasion. Targeting NSP11 offers a novel approach to antiviral intervention.

View Article and Find Full Text PDF

The importance of Fcγ and C-type lectin receptors in host immune responses during pneumonia.

Infect Immun

December 2024

Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, the Thoracic Diseases Research Unit, Mayo Clinic College of Medicine, Rochester, Minnesota, USA.

pneumonia (PJP) remains a significant cause of morbidity and mortality during AIDS. In AIDS, the absence of CD4 immunity results in exuberant and often fatal PJP. In addition, organism clearance requires a balanced macrophage response since excessive inflammation promotes lung injury and respiratory failure.

View Article and Find Full Text PDF

Sugarcane smut caused by is a global sugarcane disease, and studying its molecular pathogenesis is crucial for discovering new prevention and control targets. This study was based on the transcriptome sequencing data of two isolates with different pathogenicities ( and ) of the and screened out a gene encoding the Major Facility Superfamily (MFS) sugar transporter protein and named it . Knockout mutants ( and ) and complementary mutants ( and ) were obtained through polyethylene glycol (PEG)-mediated protoplast transformation technology.

View Article and Find Full Text PDF

Water and ion transport in nanochannels is crucial for membrane-based technology in biological systems. 2D materials, especially graphene oxide (GO), the most frequently used as the starting material, are ideal building blocks for developing synthetic membranes. However, the selective exclusion of small ions while maintaining in a pressured filtration process remains a challenge for GO membranes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!