Purpose: Deficiencies of folate, vitamins B12 and D are common age-related conditions. Vitamin B12 and folate are necessary for DNA methylation. Telomeres appear to be regulated by DNA methylation. Here, we study the effect of B vitamins supplementation on telomere length and global DNA methylation in a prospective study.

Methods: In total, 60 elderly subjects were supplemented for 1 year with either vitamin B12, B6, folate, vitamin D and calcium (group A n = 31) or only vitamin D and calcium (group B n = 29). LINE-1 methylation, relative telomere length (T/S), vitamin B12, folate, homocysteine (tHcy) , 5-methyltetrahydrofolate (5-methylTHF), S-adenosylhomocysteine (SAH), S-adenosylmethionine (SAM), cystathionine and vitamin D were quantified before and after supplementation.

Results: At baseline, tHcy was high, vitamin D was low, and T/S did not differ between groups A and B. Vitamin supplementation increased LINE-1 methylation in group A at site 317 but reduced LINE-1 methylation in group B at site 327. There was no correlation between T/S and LINE-1 methylation at baseline. Multiple backward regression analysis revealed baseline tHcy and 5-methylTHF are significant predictors of T/S. After supplementation in group B but not in group A, LINE-1 methylation correlated inversely with T/S, and LINE-1 methylation variation was an independent predictor of T/S variation. B vitamins decreased tHcy significantly in group A. Multiple backward regression analysis showed 5-methylTHF in group A and tHcy in group B were significant predictors for LINE-1 methylation. At baseline, the lower LINE-1 methylation observed in subjects with 5-methylTHF >10 nmol/l was in agreement with a reduced methyl group transfer due to a lower SAM formation. In group B, an increase in telomere length was correlated with lower LINE-1 methylation. Subjects with hyperhomocysteinemia >12 µmol/L had compared to those with normal tHcy a reduced LINE-1 methylation accompanied by a higher SAM and SAH (that inhibits demethylation of SAM) as well as lower 5-methylTHF. Additionally, subjects with tHcy > 12 µmol/L had longer telomeres when compared with subjects having tHcy < 12 µmol/L.

Conclusions: The results suggest a possible effect of B vitamins for telomere biology in blood cells. Suboptimal B vitamins status and hyperhomocysteinemia are associated with altered DNA methylation and telomere length. These data have to be confirmed in future studies.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00394-015-1003-1DOI Listing

Publication Analysis

Top Keywords

line-1 methylation
44
telomere length
16
methylation
14
vitamin b12
12
b12 folate
12
dna methylation
12
line-1
11
group
11
vitamins supplementation
8
vitamin
8

Similar Publications

The autonomous and active Long-Interspersed Element-1 (LINE-1, L1) and the non-autonomous Alu retrotransposon elements, contributing to 30% of the human genome, are the most abundant repeated sequences. With more than 90% of their sequences being methylated in normal cells, these elements undeniably contribute to the global DNA methylation level and constitute a major part of circulating-cell-free DNA (cfDNA). So far, the hypomethylation status of LINE-1 and Alu in cellular and extracellular DNA has long been considered a prevailing hallmark of ageing-related diseases and cancer.

View Article and Find Full Text PDF

Gene Polymorphisms and DNA Methylation in Idiopathic Spontaneous Preterm Birth.

Medicina (Kaunas)

December 2024

Department of Medical Biology and Genetics, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia.

: Preterm birth (PTB) is a complex condition with various contributing factors, including genetic and epigenetic influences such as DNA methylation. Methylenetetrahydrofolate reductase (MTHFR) plays a critical role in DNA methylation and the remethylation of homocysteine. This study aimed to investigate the association between maternal MTHFR C677T and A1298C polymorphisms, LINE-1 DNA methylation levels, and the risk of idiopathic spontaneous preterm birth (SPTB) in Caucasian women from Croatia and Slovenia.

View Article and Find Full Text PDF

Background: Global methylation refers to the total methylation in the DNA and can also be inferred from the Line 1 and Alu regions, as these repeats are very abundant in the genome. The main function of DNA methylation is to control gene expression and is associated with both normal and pathological mechanisms. DNA methylation depends on enzymes that generate the methyl radical (e.

View Article and Find Full Text PDF

LINE-1-Induced Retrotransposition Affects Early Preimplantation Embryo DNA Integrity and Pluripotency.

Int J Mol Sci

November 2024

Laboratory of Medical Genetics and Human Reproduction, School of Health Sciences, Faculty of Medicine, University of Ioannina, 451 10 Ioannina, Greece.

Retrotransposable elements are implicated in genome rearrangements and gene expression alterations that result in various human disorders. In the current study, we sought to investigate the potential effects of long interspersed elements-1 (LINE-1) overexpression on the integrity and methylation of DNA and on the expression of three major pluripotency factors (OCT4, SOX2, NANOG) during the preimplantation stages of human embryo development. Human MI oocytes were matured in vitro to MII and transfected through intracytoplasmic sperm injection (ICSI) either with an EGFP vector carrying a cloned active human LINE-1 retroelement or with the same EGFP vector without insert as control.

View Article and Find Full Text PDF

Background: Cytokine-induced killer (CIK) cell therapy has proven successful in clinical trials regarding glioblastoma. Equally important are the hints suggesting peroxisome proliferator-activated receptors (PPARs) ligands being co-expressed in the central nervous system (CNS). This provides a rationale about investigating the possible synergistic effect of CIK cells and PPARs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!