Activated Toll-like receptors (TLRs) cluster in lipid rafts and induce pro- and anti-tumor responses. The organization of the assembly is critical to the understanding of how these key receptors control major signaling pathways in the cell. Although several models for individual interactions were proposed, the entire TIR-domain signalosome architecture has not been worked out, possibly due to its complexity. We employ a powerful algorithm, crystal structures and experimental data to model the TLR4 and its cluster. The architecture that we obtain with 8 MyD88 molecules provides the structural basis for the MyD88-templated myddosome helical assembly and receptor clustering; it also provides clues to pro- and anti-inflammatory signaling pathways branching at the signalosome level to Mal/MyD88 and TRAM/TRIF pro- and anti-inflammatory pathways. The assembly of MyD88 death domain (DD) with TRAF3 (anti-viral/anti-inflammatory) and TRAF6 (pro-inflammatory) suggest that TRAF3/TRAF6 binding sites on MyD88 DD partially overlap, as do IRAK4 and FADD. Significantly, the organization illuminates mechanisms of oncogenic mutations, demonstrates that almost all TLR4 parallel pathways are competitive and clarifies decisions at pathway branching points. The architectures are compatible with the currently-available experimental data and provide compelling insights into signaling in cancer and inflammation pathways.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4544004 | PMC |
http://dx.doi.org/10.1038/srep13128 | DOI Listing |
J Exp Clin Cancer Res
January 2025
Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
Background: Colorectal cancer (CRC) has high incidence and mortality rates, with severe prognoses during invasion and metastasis stages. Despite advancements in diagnostic and therapeutic technologies, the impact of the tumour microenvironment, particularly extracellular matrix (ECM) stiffness, on CRC progression and metastasis is not fully understood.
Methods: This study included 107 CRC patients.
World J Surg Oncol
January 2025
Department of Pathology, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, 1665 Kongjiang Road, Yangpu District, Shanghai, 200092, China.
Objective: This study aimed to compare the expression of lymphoid enhancer factor 1 (LEF1) and β-catenin in basal cell adenoma (BA), desmoid-type fibromatosis (DF), and pancreatic solid pseudopapillary neoplasm (SPN) to evaluate their diagnostic utility in tumors associated with the WNT/β-catenin signaling pathway harboring the mutation of CTNNB1 gene 3 exon.
Methods: Eighty tumor patients, including 26 BAs, 30 DFs, and 24 SPNs, were analyzed. Immunohistochemical staining was identified positive (nuclear staining of LEF1 and β-catenin in > 50% of tumor cells).
J Nanobiotechnology
January 2025
Department of Burns, Wound Repair and Reconstruction, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China.
Hypertrophic scar (HS) is a common fibroproliferative disorders with no fully effective treatments. The conversion of fibroblasts to myofibroblasts is known to play a critical role in HS formation, making it essential to identify molecules that promote myofibroblast dedifferentiation and to elucidate their underlying mechanisms. In this study, we used comparative transcriptomics and single-cell sequencing to identify key molecules and pathways that mediate fibrosis and myofibroblast transdifferentiation.
View Article and Find Full Text PDFCardiovasc Diabetol
January 2025
Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, No.2 Anzhen Road, Chaoyang District, 100029, Beijing, China.
Introduction: Bone marrow-derived mesenchymal stem cell-derived extracellular vesicles (BMSC-EVs) are widely used for therapeutic purposes in preclinical studies. However, their utility in treating diabetes-associated atherosclerosis remains largely unexplored. Here, we aimed to characterize BMSC-EV-mediated regulation of autophagy and macrophage polarization.
View Article and Find Full Text PDFBMC Genomics
January 2025
Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.
Background: Due to sexual dimorphism in growth of penaeid shrimp, all-female cultivation is desirable for the aquaculture industry. 17β-estradiol (E2) has the potential to induce the male-to-female sex reversal of decapod species. However, the mechanisms behind it remain poorly understood.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!