Agrotransfection with viral vectors is an effective solution for the transient production of valuable proteins in plants grown in contained facilities. Transfection methods suitable for field applications are desirable for the production of high-volume products and for the transient molecular reprogramming of plants. The use of genetically modified (GM) Agrobacterium strains for plant transfections faces substantial biosafety issues. The environmental biosafety of GM Agrobacterium strains could be improved by regulating their T-DNA transfer via chemically inducible expression of virE2, one of the essential Agrobacterium virulence genes. In order to identify strong and stringently regulated promoters in Agrobacterium strains, we evaluated isopropyl-β-d-thiogalactoside-inducible promoters Plac, Ptac, PT7/lacO, and PT5/lacOlacO and cumic acid-inducible promoters PlacUV5/CuO, Ptac/CuO, PT5/CuO, and PvirE/CuO. Nicotiana benthamiana plants were transfected with a virE2-deficient A. tumefaciens strain containing transient expression vectors harboring inducible virE2 expression cassettes and containing a marker green fluorescent protein (GFP) gene in their T-DNA region. Evaluation of T-DNA transfer was achieved by counting GFP expression foci on plant leaves. The virE2 expression from cumic acid-induced promoters resulted in 47 to 72% of wild-type T-DNA transfer. Here, we present efficient and tightly regulated promoters for gene expression in A. tumefaciens and a novel approach to address environmental biosafety concerns in agrobiotechnology.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1094/MPMI-05-15-0102-R | DOI Listing |
Transgenic Res
December 2024
College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China.
Agrobacterium-mediated transformation of plants often results in the integration of multiple copies of T-DNA and backbone DNA from binary vectors into the host genome. However, the interplay between T-DNA and backbone DNA remains elusive. In this study, 70.
View Article and Find Full Text PDFPlant J
December 2024
Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy.
To enhance the breeding of new scab-resistant apple cultivars, a comprehensive understanding of the mechanisms governing major scab resistance genes is essential. Rvi12_Cd5 was previously identified as the best candidate gene for the Rvi12 scab resistance of the crab apple "Hansen's baccata #2" by gene prediction and in silico analysis. In the present study, Rvi12_Cd5 was used to transform the scab-susceptible apple cultivar "Gala Galaxy.
View Article and Find Full Text PDFPlant Physiol
December 2024
Université Paris-Saclay, Commissariat à l'Energie Atomique (CEA), Centre National de la Recherche Scientifique (CNRS), Institute for Integrative Biology of the Cell (I2BC), 91190 Gif-sur-Yvette, France.
Mobile elements known as T-DNAs are transferred from pathogenic Agrobacterium to plants and reprogram the host cell to form hairy roots or tumors. Disarmed nononcogenic T-DNAs are extensively used to deliver transgenes in plant genetic engineering. Such T-DNAs were the first known targets of RNA silencing mechanisms, which detect foreign RNA in plant cells and produce small RNAs that induce transcript degradation.
View Article and Find Full Text PDFMicroorganisms
September 2024
USDA-ARS Crop Improvement and Genetics, Western Regional Research Center, Albany, CA 94710, USA.
Citrus is one of the world's most important and widely produced fruit crops, with over a 100 million metric tons harvested from nearly 10 million hectares in 2023. Challenges in crop maintenance, production, and fruit quality necessitate developing new traits through Agrobacterium-mediated genetic transformation. While a few strains (EHA105, GV3101, LBA4404) are known to transform citrus, many wild strains remain untested.
View Article and Find Full Text PDFPlants (Basel)
September 2024
State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China.
With the development of new technologies in recent years, researchers have made significant progress in crop breeding. Modern breeding differs from traditional breeding because of great changes in technical means and breeding concepts. Whereas traditional breeding initially focused on high yields, modern breeding focuses on breeding orientations based on different crops' audiences or by-products.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!