Immunoadhesins are engineered proteins combining the constant domain (Fc) of an antibody with a ligand-binding (adhesion) domain. They have significant potential as therapeutic agents, because they maintain the favourable pharmacokinetics of antibodies with an expanded repertoire of ligand-binding domains: proteins, peptides, or small molecules. We have recently reported that the addition of a cholesterol group to two HIV antibodies can dramatically improve their antiviral potency. Cholesterol, which can be conjugated at various positions in the antibody, including the constant (Fc) domain, endows the conjugate with affinity for the membrane lipid rafts, thus increasing its concentration at the site where viral entry occurs. Here, we extend this strategy to an HIV immunoadhesin, combining a cholesterol-conjugated Fc domain with the peptide fusion inhibitor C41. The immunoadhesin C41-Fc-chol displayed high affinity for Human Embryonic Kidney (HEK) 293 cells, and when tested on a panel of HIV-1 strains, it was considerably more potent than the unconjugated C41-Fc construct. Potentiation of antiviral activity was comparable to what was previously observed for the cholesterol-conjugated HIV antibodies. Given the key role of cholesterol in lipid raft formation and viral fusion, we expect that the same strategy should be broadly applicable to enveloped viruses, for many of which it is already known the sequence of a peptide fusion inhibitor similar to C41. Moreover, the sequence of heptad repeat-derived fusion inhibitors can often be predicted from genomic information alone, opening a path to immunoadhesins against emerging viruses.

Download full-text PDF

Source
http://dx.doi.org/10.1002/psc.2802DOI Listing

Publication Analysis

Top Keywords

antiviral activity
8
hiv immunoadhesin
8
constant domain
8
hiv antibodies
8
peptide fusion
8
fusion inhibitor
8
inhibitor c41
8
cholesterol
4
cholesterol conjugation
4
conjugation potentiates
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!