Electrical propagation in cardiac tissue is a discrete or discontinuous phenomenon that reflects the complexity of the anatomical structures and their organization in the heart, such as myocytes, gap junctions, microvessels, and extracellular matrix, just to name a few. Discrete models or microscopic and discontinuous models are, so far, the best options to accurately study how structural properties of cardiac tissue influence electrical propagation. These models are, however, inappropriate in the context of large scale simulations, which have been traditionally performed by the use of continuum and macroscopic models, such as the monodomain and the bidomain models. However, continuum models may fail to reproduce many important physiological and physiopathological aspects of cardiac electrophysiology, for instance, those related to slow conduction. In this study, we develop a new mathematical model that combines characteristics of both continuum and discrete models. The new model was evaluated in scenarios of low gap-junctional coupling, where slow conduction is observed, and was able to reproduce conduction block, increase of the maximum upstroke velocity and of the repolarization dispersion. None of these features can be captured by continuum models. In addition, the model overcomes a great disadvantage of discrete models, as it allows variation of the spatial resolution within a certain range.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TBME.2015.2470256DOI Listing

Publication Analysis

Top Keywords

electrical propagation
12
cardiac tissue
12
discrete models
12
models
9
propagation cardiac
8
continuum models
8
slow conduction
8
discrete
5
mind gap
4
gap semicontinuum
4

Similar Publications

Purpose: Shear wave elastography (SWE) provides a means for adding information about the mechanical properties of tissues to a diagnostic ultrasound examination. It is important to understand the physics and methods by which the measurements are made to aid interpretation of the results as they relate to disease processes.

Methods: The components of how ultrasound is used to generate shear waves and make measurements of the induced motion are reviewed.

View Article and Find Full Text PDF

Dark-Field Absorbance Circular Dichroism of Oriented Chiral Thin Films.

J Phys Chem Lett

January 2025

Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States.

Dark-field and confocal approaches to circular dichroism (CD) spectroscopy of uniaxial thin films examine the relationship between symmetry and incoherence in the nonreciprocal CD response, or the component that is antisymmetric about the light propagation direction. Modifying a conventional CD spectrometer for low-angle scattering detection isolates incoherent contributions to nonreciprocal CD of drop-cast thin films, boasting 5-to-10-fold enhancements in CD dissymmetry parameters. Conversely, confocal detection suppresses the nonreciprocal CD response.

View Article and Find Full Text PDF

Rolling horizon coverage control with collaborative autonomous agents.

Philos Trans A Math Phys Eng Sci

January 2025

KIOS Research and Innovation Center of Excellence (KIOS CoE) and Department of Electrical and Computer Engineering, University of Cyprus, Nicosia 1678, Cyprus.

This work proposes a coverage controller that enables an aerial team of distributed autonomous agents to collaboratively generate non-myopic coverage plans over a rolling finite horizon, aiming to cover specific points on the surface area of a three-dimensional object of interest. The collaborative coverage problem, formulated as a distributed model predictive control problem, optimizes the agents' motion and camera control inputs, while considering inter-agent constraints aiming at reducing work redundancy. The proposed coverage controller integrates constraints based on light-path propagation techniques to predict the parts of the object's surface that are visible with regard to the agents' future anticipated states.

View Article and Find Full Text PDF

Laser Wakefield Acceleration of Ions with a Transverse Flying Focus.

Phys Rev Lett

December 2024

Stanford University, Department of Mechanical Engineering, Stanford, California 94305, USA.

The extreme electric fields created in high-intensity laser-plasma interactions could generate energetic ions far more compactly than traditional accelerators. Despite this promise, laser-plasma accelerator experiments have been limited to maximum ion energies of ∼100  MeV/nucleon. The central challenge is the low charge-to-mass ratio of ions, which has precluded one of the most successful approaches used for electrons: laser wakefield acceleration.

View Article and Find Full Text PDF

This study investigates the intricate properties of linearly polarized circular Airyprime-Gaussian vortex beams (CApGVBs) in tightly focused optical systems. We explore the relationship between self-focusing and tight focusing of CApGVBs by adjusting the main ring radius. By refining vortex pair parameters, we show that the intensity distribution depends significantly on whether the arrangement is axial or off-axis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!