The effect of multilayer sensitization in quantum-dot (QD)-sensitized solar cells is reported. A series of electrodes, consisting of multilayer CdSe QDs were assembled on a compact TiO2 layer. Photocurrent measurements along with internal quantum efficiency calculation reveal similar electron collection efficiency up to a 100 nm thickness of the QD layers. Moreover, the optical density and the internal quantum efficiency measurements reveal that the desired surface area of the TiO2 electrode should be increased only by a factor of 17 compared with a compact electrode. We show that the sensitization of low-surface-area TiO2 electrode with QD layers increases the performance of the solar cell, resulting in 3.86% efficiency. These results demonstrate a conceptual difference between the QD-sensitized solar cell and the dye-based system in which dye multilayer decreases the cell performance. The utilization of multilayer QDs opens new opportunities for a significant improvement of quantum-dot-sensitized solar cells via innovative cell design.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jz3010078DOI Listing

Publication Analysis

Top Keywords

solar cells
12
quantum-dot-sensitized solar
8
qd-sensitized solar
8
internal quantum
8
quantum efficiency
8
tio2 electrode
8
solar cell
8
solar
5
multilayer
5
design rules
4

Similar Publications

Enhancing a Perovskite Solar Cell and Module by Suppressing Protonation through Chelating Agents.

ACS Appl Mater Interfaces

January 2025

Institute of New Energy Technology, College of Physics and Optoelectronic Engineering, Jinan University, Guangzhou 510632, Guangdong, China.

Formamidinium-based perovskites (FA perovskites) often incorporate methylammonium chloride (MACl) to stabilize the α-FAPbI phase and prevent formation of the δ phase. However, MACl undergoes deprotonation and reacts with FA, leading to the generation of unstable byproducts that can cause component degradation and negatively impact the device performance. In this study, we introduce ethylenediaminetetramethylenephosphonic acid as a corrosion inhibitor, which effectively prevents the formation of these byproducts and stabilizes α-FAPbI.

View Article and Find Full Text PDF

The rational design of non-fullerene acceptors (NFAs) with both high crystallinity and photoluminescence quantum yield (PLQY) is of crucial importance for achieving high-efficiency and low-energy-loss organic solar cells (OSCs). However, increasing the crystallinity of an NFA tends to decrease its PLQY, which results in a high non-radiative energy loss in OSCs. Here we demonstrate that the crystallinity and PLQY of NFAs can be fine-tuned by asymmetrically adapting the branching position of alkyl chains on the thiophene unit of the L8-BO acceptor.

View Article and Find Full Text PDF

Novel factors of cisplatin resistance in epithelial ovarian tumours.

Adv Med Sci

January 2025

Department of Medical Biology, Faculty of Medicine, Pavol Jozef Šafárik University, Košice, Slovak Republic. Electronic address:

Ovarian tumours are these days one of the biggest oncogynecological problems. In addition to surgery, the treatment of ovarian cancer includes also chemotherapy in which platinum preparations are one of the most used chemotherapeutic drugs. The principle of antineoplastic effects of cisplatin (cis-diamminedichloroplatinum(II), CDDP) is its binding to the DNA and the formation of adducts.

View Article and Find Full Text PDF

Silica nano/microparticles have generated significant interest for the past decades, emerging as a versatile material with a wide range of applications in photonic crystals, bioimaging, chemical sensors, and catalysis. This study focused on synthesizing silica nano/microparticles ranging from 20 nm to 1.2 μm using the Stöber and modified Stöber methods.

View Article and Find Full Text PDF

Rhodanine Substitution of Asymmetric Nonfullerene Acceptors for High-Performance Organic Solar Cells.

ACS Appl Mater Interfaces

January 2025

College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, China.

Asymmetric substitution is acknowledged as a straightforward yet potent approach for the optimization of small molecule acceptors (SMAs), thereby enhancing the power conversion efficiency (PCE) of organic solar cells (OSCs). In this work, we have successfully engineered and synthesized a novel asymmetric SMA, designated as Y6-R, which features a rhodanine-terminated inner side-chain. In devices with PM6 as the polymer donor, the asymmetric Y6-R demonstrated an impressive PCE of 18.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!