Quantum-chemical techniques are applied to assess the electronic structure at donor/acceptor heterojunctions of interest for organic solar cells. We show that electrostatic effects at the interface of model 1D stacks profoundly modify the energy landscape explored by charge carriers in the photoconversion process and that these can be tuned by chemical design. When fullerene C60 molecules are used as acceptors and unsubstituted oligothiophenes or pentacene are used as donors, the uncompensated quadrupolar electric field at the interface provides the driving force for splitting of the charge-transfer states into free charges. This quadrupolar field can be either enhanced by switching from a C60 to a perylene-tetracarboxylic-dianhydride (PTCDA) acceptor or suppressed by grafting electron-withdrawing groups on the donor.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jz300894rDOI Listing

Publication Analysis

Top Keywords

electronic structure
8
chemical design
8
tuning interfacial
4
interfacial electronic
4
structure organic
4
organic heterojunctions
4
heterojunctions chemical
4
design quantum-chemical
4
quantum-chemical techniques
4
techniques applied
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!