A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Biostimulation by Glycerol Phosphate to Precipitate Recalcitrant Uranium(IV) Phosphate. | LitMetric

Biostimulation by Glycerol Phosphate to Precipitate Recalcitrant Uranium(IV) Phosphate.

Environ Sci Technol

Williamson Research Centre and Research Centre for Radwaste Disposal, School of Earth, Atmospheric and Environmental Sciences, The University of Manchester, Williamson Building, Oxford Road, Manchester M13 9PL, U.K.

Published: September 2015

Stimulating the microbial reduction of aqueous uranium(VI) to insoluble U(IV) via electron donor addition has been proposed as a strategy to remediate uranium-contaminated groundwater in situ. However, concerns have been raised regarding the longevity of microbially precipitated U(IV) in the subsurface, particularly given that it may become remobilized if the conditions change to become oxidizing. An alternative mechanism is to stimulate the precipitation of poorly soluble uranium phosphates via the addition of an organophosphate and promote the development of reducing conditions. Here, we selected a sediment sample from a U.K. nuclear site and stimulated the microbial community with glycerol phosphate under anaerobic conditions to assess whether uranium phosphate precipitation was a viable bioremediation strategy. Results showed that U(VI) was rapidly removed from solution and precipitated as a reduced crystalline U(IV) phosphate mineral similar to ningyoite. This mineral was considerably more recalcitrant to oxidative remobilization than the products of microbial U(VI) reduction. Bacteria closely related to Pelosinus species may have played a key role in uranium removal in these experiments. This work has implications for the stewardship of uranium-contaminated groundwater, with the formation of U(IV) phosphates potentially offering a more effective strategy for maintaining low concentrations of uranium in groundwater over long time periods.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.est.5b02042DOI Listing

Publication Analysis

Top Keywords

glycerol phosphate
8
uranium-contaminated groundwater
8
phosphate
5
biostimulation glycerol
4
phosphate precipitate
4
precipitate recalcitrant
4
recalcitrant uraniumiv
4
uraniumiv phosphate
4
phosphate stimulating
4
stimulating microbial
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!