A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Functionalized graphene oxide-based thermosensitive hydrogel for magnetic hyperthermia therapy on tumors. | LitMetric

Functionalized graphene oxide-based thermosensitive hydrogel for magnetic hyperthermia therapy on tumors.

Nanotechnology

School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, People's Republic of China. Pharmacy College, Henan University of TCM, Zhengzhou, 450003, People's Republic of China.

Published: September 2015

A novel locally injectable, biodegradable, and thermo-sensitive hydrogel made from chitosan and β-glycerophosphate salt was prepared. It incorporated polyethylenimine (PEI)-modified super-paramagnetic graphene oxide (GO/IONP/PEI) as a form of minimally invasive treatment of cancer lesions by magnetically induced local hyperthermia. Doxorubicin (DOX) was mixed into the hydrogel which was pre-loaded on GO/IONP/PEI to create a drug delivery system DOX-GO/IONP/PEI-gel. In addition to the evaluation of in vitro and in vivo antitumor activities, the physicochemical properties, magnetic properties and DOX release profile of the DOX-GO/IONP/PEI-gel were determined. The aqueous solution of the hydrogel showed a sol-gel transition behavior depending on temperature changes. Magnetization loops indicated the super-paramagnetic properties of GO/IONP/PEI. Compared with free DOX, DOX-GO/IONP/PEI could efficiently pass through cell membranes, leading to more apoptosis and demonstrating higher antitumor efficacy on MCF-7 cells in vitro. Furthermore, DOX-GO/IONP/PEI-gel intratumorally injected (i.t.) showed high antitumor efficacy on tumor-bearing mice in vivo, with no obvious toxicity. The antitumor efficacy was higher when combined with an alternating magnetic field (AMF), showing that DOX-GO/IONP/PEI-gel under AMF has great potential for cancer magnetic hyperthermia therapy.

Download full-text PDF

Source
http://dx.doi.org/10.1088/0957-4484/26/36/365103DOI Listing

Publication Analysis

Top Keywords

antitumor efficacy
12
magnetic hyperthermia
8
hyperthermia therapy
8
functionalized graphene
4
graphene oxide-based
4
oxide-based thermosensitive
4
hydrogel
4
thermosensitive hydrogel
4
magnetic
4
hydrogel magnetic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!