Electrochemical mineralization of the antibiotic levofloxacin by electro-Fenton-pyrite process.

Chemosphere

Laboratori d'Electroquímica dels Materials i del Medi Ambient, Departament de Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain. Electronic address:

Published: December 2015

Levofloxacin is a large spectrum antibiotic from fluoroquinolones family, widely used and detected in natural waters. Here, this drug was degraded by a novel heterogeneous electro-Fenton (EF) process, so-called EF-pyrite, in which pyrite powder in suspension regulates the solution pH to 3.0 and supplies 0.2mM Fe(2+) as catalyst to the solution. Trials were performed with a stirred boron-doped diamond (BDD)/carbon-felt cell under O2 bubbling for cathodic H2O2 generation. Hydroxyl radicals formed from water oxidation at the BDD anode and in the bulk from Fenton's reaction between Fe(2+) and H2O2 were the main oxidizing agents. The effect of applied current and antibiotic concentration over the mineralization rate and degree, mineralization current efficiency and specific energy consumption was studied. An almost total mineralization was achieved for a 0.23mM drug solution operating at 300mA for 8h. The kinetic decay of the drug was followed by reversed-phase HPLC and obeyed a pseudo-first-order reaction. Ion-exclusion HPLC analysis of treated solutions revealed that oxalic and oxamic acids, the most persistent final products, were the predominant pollutants remaining in solution at long electrolysis time. Ion chromatography analysis confirmed the release of F(-), NO3(-) and NH4(+) ions during levofloxacin mineralization.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2015.08.003DOI Listing

Publication Analysis

Top Keywords

electrochemical mineralization
4
mineralization antibiotic
4
antibiotic levofloxacin
4
levofloxacin electro-fenton-pyrite
4
electro-fenton-pyrite process
4
process levofloxacin
4
levofloxacin large
4
large spectrum
4
spectrum antibiotic
4
antibiotic fluoroquinolones
4

Similar Publications

Deciphering the surface electrochemical reconstruction of ruthenium-cobalt-nickel phosphide for efficient high-current hydrogen evolution and overall water splitting.

J Colloid Interface Sci

December 2024

Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources of Ministry of Education, Wuhan University of Technology, Wuhan, Hubei 430073, China; School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, Hubei 430073, China. Electronic address:

Development of efficient and stable bifunctional transition metal phosphide catalysts is critical for advancing hydrogen production technologies. Herein, RuCo co-doped NiP (RuCoNiP) was designed and synthesized by one-step electrodeposition for Ni electronic structure modulation, and evolved to RuCoNiP@α-Ni(OH) and RuCoNiP@Co/Ni(OH) heterointerfaces by self-assembled reconstruction during HER and OER processes, respectively. RuCoNiP@α-Ni(OH) enhances HER activity (305.

View Article and Find Full Text PDF

To investigate the influence of cations on the microstructural characteristics of electrochemical reinforcement in soft clay, a study was conducted using three different cationic salt solutions-NaCl, CaCl₂, and FeCl₃-for grouting treatment. Four sets of indoor experiments were performed to examine the reinforcement mechanism of the electrochemical method. The findings indicate that increasing the valence of injected cations significantly affects the electrochemical reinforcement effect and the soil's microstructural properties.

View Article and Find Full Text PDF

Carbon-based light addressable potential aptasensor based on the synergy of C-MXene@rGO and OPD@NGQDs for low-density lipoprotein detection.

Mikrochim Acta

December 2024

School of Life and Environmental Sciences, School of Intellectual Property, Guilin University of Electronic Technology, Guilin, Guangxi, 541004, People's Republic of China.

A novel carbon-based light-addressable potentiometric aptasensor (C-LAPS) was constructed for detection low-density lipoprotein (LDL) in serum. Carboxylated TiC MXene @reduced graphene oxide (C-MXene@rGO) was used as interface and o-phenylenediamine functionalized nitrogen-doped graphene quantum dots (OPD@NGQDs) as the photoelectric conversion element. The photosensitive layers composed of OPD@NGQDs/C-MXene@rGO exhibit superior photoelectric conversion efficiency and excellent biocompatibility, which contribute to an improved response signal.

View Article and Find Full Text PDF

The direct discharge of cationic surfactants into environmental matrices has exponentially increased due to their wide application in many products. These compounds and their degraded products disrupt microbial dynamics, hinder plant survival, and affect human health. Therefore, there is an urgent need to develop electroanalytical assessment techniques for their identification, determination, and monitoring.

View Article and Find Full Text PDF

A Highly Stable Electrochemical Sensor Based on a Metal-Organic Framework/Reduced Graphene Oxide Composite for Monitoring the Ammonium in Sweat.

Biosensors (Basel)

December 2024

Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen 518107, China.

The demand for non-invasive, real-time health monitoring has driven advancements in wearable sensors for tracking biomarkers in sweat. Ammonium ions (NH) in sweat serve as indicators of metabolic function, muscle fatigue, and kidney health. Although current ion-selective all-solid-state printed sensors based on nanocomposites typically exhibit good sensitivity (~50 mV/log [NH]), low detection limits (LOD ranging from 10 to 10 M), and wide linearity ranges (from 10 to 10 M), few have reported the stability test results necessary for their integration into commercial products for future practical applications.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!