A direct, catalytic hydrodecarboxylation of primary, secondary, and tertiary carboxylic acids is reported. The catalytic system consists of a Fukuzumi acridinium photooxidant with phenyldisulfide acting as a redox-active cocatalyst. Substoichiometric quantities of Hünig's base are used to reveal the carboxylate. Use of trifluoroethanol as a solvent allowed for significant improvements in substrate compatibilities, as the method reported is not limited to carboxylic acids bearing α heteroatoms or phenyl substitution. This method has been applied to the direct double decarboxylation of malonic acid derivatives, which allows for the convenient use of dimethyl malonate as a methylene synthon. Kinetic analysis of the reaction is presented showing a lack of a kinetic isotope effect when generating deuterothiophenol in situ as a hydrogen atom donor. Further kinetic analysis demonstrated first-order kinetics with respect to the carboxylate, while the reaction is zero-order in acridinium catalyst, consistent with another finding suggesting the reaction is light limiting and carboxylate oxidation is likely turnover limiting. Stern-Volmer analysis was carried out in order to determine the efficiency for the carboxylates to quench the acridinium excited state.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5768415PMC
http://dx.doi.org/10.1021/jacs.5b07770DOI Listing

Publication Analysis

Top Keywords

malonic acid
8
acid derivatives
8
carboxylic acids
8
kinetic analysis
8
hydrodecarboxylation carboxylic
4
carboxylic malonic
4
derivatives organic
4
organic photoredox
4
photoredox catalysis
4
catalysis substrate
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!