Neural networks underlying the metacognitive uncertainty response.

Cortex

Department of Psychological & Brain Sciences, University of California, Santa Barbara, USA. Electronic address:

Published: October 2015

Humans monitor states of uncertainty that can guide decision-making. These uncertain states are evident behaviorally when humans decline to make a categorization response. Such behavioral uncertainty responses (URs) have also defined the search for metacognition in animals. While a plethora of neuroimaging studies have focused on uncertainty, the brain systems supporting a volitional strategy shift under uncertainty have not been distinguished from those observed in making introspective post-hoc reports of categorization uncertainty. Using rapid event-related fMRI, we demonstrate that the neural activity patterns elicited by humans' URs are qualitatively different from those recruited by associative processes during categorization. Participants performed a one-dimensional perceptual-categorization task in which an uncertainty-response option let them decline to make a categorization response. Uncertainty responding activated a distributed network including prefrontal cortex (PFC), anterior and posterior cingulate cortex (ACC, PCC), anterior insula, and posterior parietal areas; importantly, these regions were distinct from those whose activity was modulated by task difficulty. Generally, our results can be characterized as a large-scale cognitive control network including recently evolved brain regions such as the anterior dorsolateral and medial PFC. A metacognitive theory would view the UR as a deliberate behavioral adjustment rather than just a learned middle category response, and predicts this pattern of results. These neuroimaging results bolster previous behavioral findings, which suggested that different cognitive processes underlie responses due to associative learning versus the declaration of uncertainty. We conclude that the UR represents an elemental behavioral index of metacognition.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4751865PMC
http://dx.doi.org/10.1016/j.cortex.2015.07.028DOI Listing

Publication Analysis

Top Keywords

uncertainty
8
decline categorization
8
categorization response
8
network including
8
neural networks
4
networks underlying
4
underlying metacognitive
4
metacognitive uncertainty
4
response
4
uncertainty response
4

Similar Publications

Background: Active surveillance (AS) is the guideline-recommended treatment for low-risk prostate cancer and involves routine provider visits, lab tests, imaging, and prostate biopsies. Despite good uptake, adherence to AS, in terms of receiving recommended follow-up testing and remaining on AS in the absence of evidence of cancer progression, remains challenging.

Objective: We sought to better understand urologist, primary care providers (PCPs), and patient experiences with AS care delivery to identify opportunities to improve adherence.

View Article and Find Full Text PDF

Increased intolerance of uncertainty (IU), or distress felt when encountering situations with unknown outcomes, occurs transdiagnostically across various forms of psychopathology and is targeted in therapeutic intervention. Increased intolerance of uncertainty shows overlap with symptoms of internalizing disorders, such as depression and anxiety, including negative affect and anxious apprehension (worry). While neuroanatomical correlates of IU have been reported, previous investigations have not disentangled the specific neural substrates of IU above and beyond any overlapping relationships with aspects of internalizing psychopathology.

View Article and Find Full Text PDF

Assessing the impact of climate change on water-related ecosystem services (ES) in Protected Areas (PAs) is essential for developing soil and water conservation strategies that promote sustainability and restore ES. However, the application of ES research in Protected Area (PA) management remains ambiguous and has notable shortcomings. This study primarily aimed to assess the SDR-InVEST (Sediment Delivery Ratio-Integrated Valuation of Ecosystem Services and Tradeoffs) model for estimating ES, including soil loss, sediment export, and sediment retention, under various climate change scenarios from 1997 to 2100 in the data-scarce region of the Bagh-e-Shadi Forest PA.

View Article and Find Full Text PDF

Auditory perception requires categorizing sound sequences, such as speech or music, into classes, such as syllables or notes. Auditory categorization depends not only on the acoustic waveform, but also on variability and uncertainty in how the listener perceives the sound - including sensory and stimulus uncertainty, the listener's estimated relevance of the particular sound to the task, and their ability to learn the past statistics of the acoustic environment. Whereas these factors have been studied in isolation, whether and how these factors interact to shape categorization remains unknown.

View Article and Find Full Text PDF

Recently, deep latent variable models have made significant progress in dealing with missing data problems, benefiting from their ability to capture intricate and non-linear relationships within the data. In this work, we further investigate the potential of Variational Autoencoders (VAEs) in addressing the uncertainty associated with missing data via a multiple importance sampling strategy. We propose a Missing data Multiple Importance Sampling Variational Auto-Encoder (MMISVAE) method to effectively model incomplete data.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!