Low-level sodium arsenite induces apoptosis through inhibiting TrxR activity in pancreatic β-cells.

Environ Toxicol Pharmacol

Department of Occupational and Environmental Health, Dalian Medical University, 9 W Lvshun South Road, Dalian 116044, PR China; Liaoning Anti-Degenerative Diseases Natural Products Engineering Research Center, Dalian Medical University, 9 W Lvshun South Road, Dalian 116044, PR China. Electronic address:

Published: September 2015

In our previous study, we reported that sodium arsenite induced ROS-dependent apoptosis through lysosomal-mitochondrial pathway in pancreatic β-cells. Since the thioredoxin (Trx) system is the key antioxidant factor in mammalian cells, we investigate whether the inhibition of Trx system contributes to sodium arsenite-induced apoptosis in this study. After treatment with low-level (0.25-1μM) sodium arsenite for 96h, the thioredoxin reductase (TrxR) activity was decreased significantly in pancreatic INS-1 cells. Following with the inactivation of TrxR, ASK1 was released from combining with Trx, which was evidenced by increased levels of ASK1 in sodium arsenite-treated INS-1 cells. Subsequently, activated ASK1 accelerated the expression of proapoptotic protein Bax and reduced the expression of anti-apoptic protein Bcl-2. Finally, low-level sodium arsenite induced apoptosis via caspase-3 in INS-1 cells. Knockdown of ASK1 alleviated sodium arsenite-induced apoptosis. In summary, the precise molecular mechanisms through which arsenic is related to diabetes have not been completely elucidated, inactivation of Trx system might provide insights into the underlying mechanisms at the environmental exposure levels.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.etap.2015.08.003DOI Listing

Publication Analysis

Top Keywords

sodium arsenite
16
trx system
12
ins-1 cells
12
low-level sodium
8
trxr activity
8
pancreatic β-cells
8
arsenite induced
8
sodium arsenite-induced
8
arsenite-induced apoptosis
8
sodium
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!