Neurons in prefrontal cortex (PFC) encode rules, goals, and other abstract information thought to underlie cognitive, emotional, and behavioral flexibility. Here we show that the amygdala, a brain area traditionally thought to mediate emotions, also encodes abstract information that could underlie this flexibility. Monkeys performed a task in which stimulus-reinforcement contingencies varied between two sets of associations, each defining a context. Reinforcement prediction required identifying a stimulus and knowing the current context. Behavioral evidence indicated that monkeys utilized this information to perform inference and adjust their behavior. Neural representations in both amygdala and PFC reflected the linked sets of associations implicitly defining each context, a process requiring a level of abstraction characteristic of cognitive operations. Surprisingly, when errors were made, the context signal weakened substantially in the amygdala. These data emphasize the importance of maintaining abstract cognitive information in the amygdala to support flexible behavior.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4574873 | PMC |
http://dx.doi.org/10.1016/j.neuron.2015.07.024 | DOI Listing |
Commun Psychol
January 2025
Institute of Psychology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany.
Learning an association does not always succeed on the first attempt. Previous studies associated increased error signals in posterior medial frontal cortex with improved memory formation. However, the neurophysiological mechanisms that facilitate post-error learning remain poorly understood.
View Article and Find Full Text PDFJ Nucl Med
January 2025
Department of Nuclear Medicine, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.
Cognitive flexibility is the ability to appropriately adapt one's thinking and behavior to changing environmental demands and is conceptualized as an aspect of executive function. The dopamine system has been implicated in cognitive flexibility; however, a direct, that is, neurochemical, link to cognitive flexibility has not been shown yet. The aim of this study was, therefore, to investigate how cognitive flexibility is mediated by dopaminergic signaling in the ventromedial prefrontal cortex (vmPFC).
View Article and Find Full Text PDFToxicol Appl Pharmacol
January 2025
School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, China; Anhui Provincial Laboratory of Inflammatory and Immune Disease, Anhui Institute of Innovative Drugs, Hefei, Anhui 230032, China; The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, Anhui 230032, PR China. Electronic address:
Objectives: Investigating the effect of melatonin (MLT) on the pharmacokinetics and related neurotransmitter and amino acid metabolism of vigabatrin (VGB) in epileptic rats in vivo.
Methods: High performance liquid chromatography was used to examine the pharmacokinetics and tissue distribution of VGB after intragastric administration dosing (50,100,200) mg/kg singly or in combination with melatonin (20 mg/kg) in rats. The single-compartment model of first-order elimination was fitted with the nonlinear mixed-effect model of first-order estimation.
Neuroscience
January 2025
Department of Physiology, College of Medicine, Health Sciences Centre, Kuwait University, P.O. Box 24923, Safat 13110, Kuwait. Electronic address:
Maternal immune activation (MIA) induces long-term cognitive impairments by modulating the gamma-aminobutyric acid (GABA)ergic system. Experimental evidence suggests that maternal immune challenge with bacterial active ingredient lipopolysaccharide (LPS) reduces GABAergic tone in the offspring's prefrontal cortex. In this study, we aimed to assess whether interleukin-6 (IL-6) contributes to this reduced GABAergic system in the prefrontal cortex of juvenile offspring.
View Article and Find Full Text PDFNeuroimage
January 2025
Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), Institute of Brain and Education Innovation, School of Psychology and Cognitive Science, East China Normal University, Shanghai, China; Shanghai Center for Brain Science and Brain-Inspired Technology, Shanghai, China; NYU-ECNU Institute of Brain and Cognitive Science, New York University Shanghai, Shanghai, China. Electronic address:
Environmental and social changes during early school age have a profound impact on brain development. However, it remains unclear how the brains of typically-developing children adjust white matter to optimize network topology during this period. This study aims to propose the fiber length distribution as a novel nodal metric to capture the continuous maturation of brain network.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!