Quantum Calculations of Intramolecular IR Spectra of Ice Models Using Ab Initio Potential and Dipole Moment Surfaces.

J Phys Chem Lett

Cherry L. Emerson Center for Scientific Computation and Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States.

Published: December 2012

We report the IR spectra of two forms of ice in the monomer bend and OH-stretching regions, using recently developed ab initio potential and dipole moment surfaces for arbitrarily many water monomers. Coupling and anharmonicity of the intramolecular vibrational modes are taken into account using coupled three-mode variational calculations, within the local-monomer model. Spectra for the surface and core regions of these ice models are presented. The calculated spectra for the core region, with no adjustments, are in good agreement with experiment for the intramolecular OH-stretch and bend regions. Our analysis also shows a significant contribution from the overtone of the monomer bend to the OH-stretch region of the spectra.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jz3016777DOI Listing

Publication Analysis

Top Keywords

ice models
8
initio potential
8
potential dipole
8
dipole moment
8
moment surfaces
8
monomer bend
8
spectra
5
quantum calculations
4
calculations intramolecular
4
intramolecular spectra
4

Similar Publications

Iceberg calving is a major contributor to Greenland's ice mass loss. Ice mélange, tightly packed sea ice and icebergs, has been hypothesized to buttress the calving fronts. However, quantifying the mélange buttressing force from field observations remains a challenge.

View Article and Find Full Text PDF

Climate-driven changes in high-elevation forest distribution and reductions in snow and ice cover have major implications for ecosystems and global water security. In the Greater Yellowstone Ecosystem of the Rocky Mountains (United States), recent melting of a high-elevation (3,091 m asl) ice patch exposed a mature stand of whitebark pine () trees, located ~180 m in elevation above modern treeline, that date to the mid-Holocene (c. 5,950 to 5,440 cal y BP).

View Article and Find Full Text PDF

Accurately modeling the deformation of temperate glacier ice, which is at its pressure-melting temperature and contains liquid water at grain boundaries, is essential for predicting ice sheet discharge to the ocean and associated sea-level rise. Central to such modeling is Glen's flow law, in which strain rate depends on stress raised to a power of = 3 to 4. In sharp contrast to this nonlinearity, we found by conducting large-scale, shear-deformation experiments that temperate ice is linear-viscous ( 1.

View Article and Find Full Text PDF

Comprehensive Approach for Sequential MALDI-MSI Analysis of Lipids, -Glycans, and Peptides in Fresh-Frozen Rodent Brain Tissues.

Anal Chem

January 2025

Department of Pharmaceutical Biosciences, Spatial Mass Spectrometry, Science for Life Laboratory, Uppsala University, SE-75124 Uppsala ,Sweden.

Multiomics analysis of single tissue sections using matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) provides comprehensive molecular insights. However, optimizing tissue sample preparation for MALDI-MSI to achieve high sensitivity and reproducibility for various biomolecules, such as lipids, -glycans, and tryptic peptides, presents a significant challenge. This study introduces a robust and reproducible protocol for the comprehensive sequential analysis of the latter molecules using MALDI-MSI in fresh-frozen rodent brain tissue samples.

View Article and Find Full Text PDF

Fabrication of nanocellulose-based high-mechanical and super-hydrophobic xerogels for speedy oil absorbents.

Carbohydr Polym

March 2025

Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China. Electronic address:

Cellulose-based porous materials are promising for various fields and preferred for sustainable development. However, the low mechanical properties and high hydrophilicity of cellulose-based xerogels had a direct influence on their application in oil absorption. To address the challenge, an environmentally friendly and economical method for synthesizing MTMS/C0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!