Nanoparticle network devices find growing application in sensing and electronics. One recurring challenge in the design and fabrication of this class of devices is ensuring a stable interface via robust yet unobstructive electrodes. A figure of merit which dictates the minimum electrode overlap required for optimal charge injection into the network is the contact transfer length. However, we find that traditional contact characterization using the transmission line model, an indirect method which requires extrapolation, is insufficient for network devices. Instead, we apply Kelvin probe force microscopy to characterize the contact resistance by imaging the surface potential with nanometer resolution. We then use scanning probe lithography to directly investigate the contact transfer length. We have determined the transfer length in graphene contacted devices to be 200-400 nm, thus apt for further device reduction which is often necessary for on-site sensing applications. Simulations from a two-dimensional resistor model support our observations and are expected to be an important tool for further optimizing the design of nanoparticle-based devices.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/0957-4484/26/36/365701 | DOI Listing |
Microbiol Resour Announc
January 2025
Division of Mathematics, Science, and Engineering, Hartnell College, Salinas, California, USA.
We present the complete chloroplast genome of the eelgrass from Monterey, California. The genome is circular and 144,675 bp in length. It consists of 82 protein-coding, 31 transfer RNA, and 8 ribosomal RNA genes and is 99.
View Article and Find Full Text PDFChemphyschem
January 2025
University of Namur, Department of Chemistry, Rue de Bruxelles, 61, 5000, Namur, BELGIUM.
The [4+2] Diels-Alder cycloaddition reaction between 2,5-DMF (1) and ethylene derivatives (2a-h) activated by electron-withdrawing groups has been studied at the density functional theory levels using a panoply of tools to unravel the reaction mechanisms. From the analysis of the reactivity indices, 2a-h behave as electrophiles while 1 as nucleophile, and the activation of the double bond of ethylene increases its electrophilicity, which is accompanied by an enhancement of the polarity of the reaction. The activation Gibbs free energy decreases linearly as a function of this increase of polarity, as estimated by the electrophilicity difference between the reactants.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Department of Physics, Assam University, Silchar-788011, India.
Density functional theory has been employed to study indolo[3,2,1-]carbazole donor-based dyes, incorporating one and two units of 2,4-dimethoxybenzene auxiliary donors. Electrostatic potential analysis highlights the dye with one auxiliary donor (D2) as having the highest charge-donating capability. Structural analysis shows that auxiliary donors enhance planarity, reduce steric hindrance, and improve π-conjugation.
View Article and Find Full Text PDFGMS Interdiscip Plast Reconstr Surg DGPW
December 2024
University Center for Orthopedics, Trauma and Plastic Surgery, Department of Plastic and Hand Surgery, University Hospital Carl Gustav Carus at the TU Dresden, Germany.
Background: Significant osseous defects or osteonecrosis, precipitated by open fractures, infections, or neoplastic conditions, represent infrequent yet critical medical conditions. The free vascularized fibular graft (FVFG) is a challenging but straightforward, reliable surgical intervention for the reconstruction of defects across various anatomical regions. This study aims to compare, quantify, and demonstrate the FVFG's versatility.
View Article and Find Full Text PDFMitochondrial DNA B Resour
January 2025
Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China.
The genomic-level characteristics play a pivotal role as genetic assets for the identification of species and phylogenetic analysis. Here, we sequenced and analyzed the mitochondrial genome of (Ratzeburg), which was first morphologically described in "Die Ichneumonen der Forstinsecten in forstlicher und entomologischer Beziehung." The motivation for this research arises from the necessity to comprehend the genetic composition and evolutionary history of , a genus of parasitic wasps with potential agricultural significance, which.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!