Hierarchical self-assembly is a fundamental principle in nature, which gives rise to astonishing supramolecular architectures that offer an inspiration for the development of innovative materials in nanotechnology. Here we present the unique structure of a cone-shaped amphiphilic designer peptide. When tracking its concentration-dependent morphologies, we observed elongated bilayered single tapes at the beginning of the assembly process, which further developed into novel double-helix-like superstructures at increased concentrations. This architecture is characterized by a tight intertwisting of two individual helices, resulting in a periodic pitch size over their total lengths of several hundred nanometers. Solution X-ray scattering data revealed a marked 2-layered internal organization. All these characteristics remained unaltered for the investigated period of almost three months. In their collective morphology the assemblies are integrated into a network with hydrogel characteristics. Such a peptide based structure holds promise for a building block of next-generation nanostructured biomaterials.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4538866PMC
http://dx.doi.org/10.1007/s12274-014-0683-9DOI Listing

Publication Analysis

Top Keywords

amphiphilic designer
8
designer peptide
8
tracking morphologies
4
morphologies nanoscale
4
nanoscale self-assembly
4
self-assembly amphiphilic
4
peptide double
4
double helix
4
helix superstructure
4
superstructure hierarchical
4

Similar Publications

Terpene-based amphiphilic copolymers have been designed as biobased stabilizers for waterborne latex synthesized by miniemulsion or emulsion polymerization of 1,3-diene terpene monomers. The pH-responsive P(AA--My) amphiphilic copolymers were synthesized by nitroxide-mediated radical copolymerization of β-myrcene (My) and acrylic acid (AA) with reactivity ratios of = 0.24 ± 0.

View Article and Find Full Text PDF

Amphiphilic polymers with distinct polarity differences, known as sharp polarity contrast polymers (SPCPs), have gained much attention for their ability to form micelles with low critical micelle concentrations (CMCs) and potential in anticancer drug delivery. This study addresses the limited research on structure-property relationships of SPCPs by developing various SPCPs and exploring their physicochemical properties and biological applications. Specifically, the superhydrophobic aliphatic palmitoyl (Pal) was coupled to the superhydrophilic zwitterionic poly(2-methacryloyloxyethyl phosphorylcholine) (pMPC) to form Pal-pMPC diblock copolymers.

View Article and Find Full Text PDF

Rational design of AIEgens through π-bridge engineering for dual-modal photodynamic and photothermal therapy.

Bioorg Med Chem

January 2025

School of Pharmacy, Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Guizhou International Science & Technology Cooperation Base of Medical Optical Theranostics Research, Zunyi Medical University, Zunyi, Guizhou 563003, PR China. Electronic address:

A series of aggregation-induced emission luminogens (AIEgens) with donor-π-acceptor (D-π-A) architecture were rationally designed and synthesized through π-bridge engineering for dual-modal photodynamic and photothermal therapy. The AIEgens (TPT, TFT, and TTT) were constructed using methoxy-substituted tetraphenylene as the electron donor and tricyanofuran as the electron acceptor, connected via different π-bridges (phenyl, furan, or thiophene). These compounds exhibited red-shifted absorption (460-545 nm) and emission (712-720 nm) with remarkable aggregation-induced emission characteristics.

View Article and Find Full Text PDF

The integration of photodynamic therapy (PDT) and photothermal therapy (PTT) offers a promising strategy for enhancing phototherapy efficiency. Herein, we present a dual-functional, biocompatible nanocomposite system for combination PDT/PTT therapy. The system utilizes a highly biocompatible nanoparticle assembled by an amphiphilic short peptide with the assistance of Zn as a carrier.

View Article and Find Full Text PDF

PSMA-targeted delivery of docetaxel in prostate cancer using small-sized PDA-based micellar nanovectors.

J Control Release

January 2025

Asymmetric Synthesis and Functional Nanosystems Group (Art&Fun), Institute of Chemical Research (IIQ), CSIC-University of Seville, C/ Américo Vespucio 49, 41092 Seville, Spain. Electronic address:

In this study, we present the first comparative analysis of active and passive drug delivery systems for docetaxel (DTX) in prostate cancer using supramolecular self-assembled micellar nanovectors. Specifically, we developed two novel micelles based on polydiacetylenic amphiphiles (PDA) for passive and active targeting. The active targeting micelles were designed with a prostate-specific membrane antigen (PSMA) ligand, ACUPA, to facilitate recognition by PSMA-positive cancer cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!