A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

In silico mechanistic analysis of IRF3 inactivation and high-risk HPV E6 species-dependent drug response. | LitMetric

The high-risk human papillomavirus E6 (hrHPV E6) protein has been widely studied due to its implication in cervical cancer. In response to viral threat, activated kinases phosphorylate the IRF3 autoinhibitory domain, inducing type1 interferon production. HPV circumvents the antiviral response through the possible E6 interaction with IRF3 and abrogates p53's apoptotic activity by recruiting E6-associated protein. However, the molecular mechanism of IRF3 inactivation by hrHPV E6 has not yet been delineated. Therefore, we explored this mechanism through in silico examination of protein-protein and protein-ligand docking, binding energy differences, and computational alanine mutagenesis. Our results suggested that the LxxLL motifs of IRF3 binds within the hydrophobic pocket of E6, precluding Ser-patch phosphorylation, necessary for IRF3 activation and interferon induction. This model was further supported by molecular dynamics simulation. Furthermore, protein-ligand docking and drug resistance modeling revealed that the polar patches in the pocket of E6, which are crucial for complex stability and ligand binding, are inconsistent among hrHPV species. Such variabilities pose a risk of treatment failure owing to point mutations that might render drugs ineffective, and allude to multi-drug therapy. Overall, this study reveals a novel perspective of innate immune suppression in HPV infections and suggests a plausible therapeutic intervention.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4542336PMC
http://dx.doi.org/10.1038/srep13446DOI Listing

Publication Analysis

Top Keywords

irf3 inactivation
8
protein-ligand docking
8
irf3
6
silico mechanistic
4
mechanistic analysis
4
analysis irf3
4
inactivation high-risk
4
high-risk hpv
4
hpv species-dependent
4
species-dependent drug
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!