Data in support of environmental controls on the characteristics of mean number of forest fires and mean forest area burned (1987-2007) in China.

Data Brief

State Key Laboratory of Forest and Soil Ecology, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110164, China.

Published: September 2015

Fire frequency and size are two important parameters describing fire characteristics. Exploring the spatial variation of fire characteristics and understanding the environmental controls are indispensable to fire prediction and sustainable forest landscape management. To illustrate the spatial variation of forest fire characteristics over China and to quantitatively determine the relative contribution of each of the environmental controls to this variation, forest fire characteristic data (mean number of forest fires and mean burned forest area) and environmental data (climate, land use, vegetation type and topography) at provincial level were derived. These data sets can potentially serve as a foundation for future studies relating to fire risk assessment, carbon emission by forest fires, and the impact of climate change on fire characteristics. This data article contains data related to the research article entitled "Environmental controls on the characteristics of mean number of forest fires and mean forest area burned (1987-2007) in China" by chang et al. [1].

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4539166PMC
http://dx.doi.org/10.1016/j.dib.2015.07.025DOI Listing

Publication Analysis

Top Keywords

forest fires
16
fire characteristics
16
environmental controls
12
number forest
12
forest area
12
forest
10
controls characteristics
8
characteristics number
8
fires forest
8
area burned
8

Similar Publications

Emergency managers' challenges with wildfires and related cascading hazards in California.

J Environ Manage

January 2025

Department of Psychological Science, University of California, Irvine, CA, 92697, USA; Department of Medicine, University of California, Irvine, CA, 92697, USA; Department of Health, Society, and Behavior, University of California, Irvine, CA, 92697, USA; Department of Population Health and Disease Prevention, University of California, Irvine, CA, 92697, USA.

This study investigates the complexities faced by emergency managers in wildfire-prone areas to uncover pressing issues and potential solutions. Four themes are discerned through three focus group discussions with emergency managers from nine counties across California. First, there is unequal access to resources for both risk assessment and response, with counties that have fewer resources facing significant challenges in effectively managing wildfire risks.

View Article and Find Full Text PDF

Relative fire-proneness of land cover types in the Brazilian Atlantic forest.

J Environ Manage

January 2025

CE3C-Centre for Ecology, Evolution and Environmental Changes & CHANGE, Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, C2, Piso 5, 1749-016, Lisboa, Portugal. Electronic address:

Fires are increasingly affecting tropical biomes, where landscape-fire interactions remain understudied. We investigate the fire-proneness-the likelihood of a land use or land cover (LULC) type burning more or less than expected based on availability-in the Brazilian Atlantic Forest (AF). This biodiversity hotspot is increasingly affected by fires due to human activities and climate change.

View Article and Find Full Text PDF

Household needs among wildfire survivors in the 2017 Northern California wildfires.

Environ Res Health

March 2025

Department of Public Health Sciences, School of Medicine, University of California, Davis, United States of America.

Wildfires are impacting communities globally, with California wildfires often breaking records of size and destructiveness. Knowing how communities are affected by these wildfires is vital to understanding recovery. We sought to identify impacted communities' post-wildfire needs and characterize how those needs change over time.

View Article and Find Full Text PDF

Climate change poses direct and indirect threats to public health, including exacerbating air pollution. However, the influence of rising temperature on air quality remains highly uncertain in the United States, particularly under rapid reduction in anthropogenic emissions. Here, we examined the sensitivity of surface-level fine particulate matter (PM) and ozone (O) to summer temperature anomalies in the contiguous US as well as their decadal changes using high-resolution datasets generated by machine learning.

View Article and Find Full Text PDF

Background: Prescribed fires play a critical role in reducing the intensity and severity of future wildfires by systematically and widely consuming accumulated vegetation fuel. While the current probability of prescribed fire escape in the United States stands very low, their consequential impact, particularly the large wildfires they cause, raises substantial concerns. The most direct way of understanding this trade-off between wildfire risk reduction and prescribed fire escapes is to explore patterns in the historical prescribed fire records.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!