Time-dependent inhibition (TDI) of cytochrome P450 (CYP) enzymes may incur serious undesirable drug-drug interactions and in rare cases drug-induced idiosyncratic toxicity. The reactive metabolites are often generated through multiple sequential biotransformations and form adducts with CYP enzymes to inactivate their function. The complexity of these processes makes addressing TDI liability very challenging. Strategies to mitigate TDI are therefore highly valuable in discovering safe therapies to benefit patients. In this Letter, we disclose our simplified approach toward addressing CYP3A TDI liabilities, guided by metabolic mechanism hypotheses. By adding a methyl group onto the α carbon of a basic amine, TDI activities of both the truncated and full molecules (7a and 11) were completely eliminated. We propose that truncated molecules, albeit with caveats, may be used as surrogates for full molecules to investigate TDI.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4538442PMC
http://dx.doi.org/10.1021/acsmedchemlett.5b00191DOI Listing

Publication Analysis

Top Keywords

time-dependent inhibition
8
cyp enzymes
8
full molecules
8
tdi
6
probing mechanisms
4
mechanisms cyp3a
4
cyp3a time-dependent
4
inhibition truncated
4
truncated model
4
model system
4

Similar Publications

Differential Mitochondrial Redox Responses to the Inhibition of NAD Salvage Pathway of Triple Negative Breast Cancer Cells.

Cancers (Basel)

December 2024

Britton Chance Laboratory of Redox Imaging, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.

: Cancer cells rely on metabolic reprogramming that is supported by altered mitochondrial redox status and an increased demand for NAD. Over expression of Nampt, the rate-limiting enzyme of the NAD biosynthesis salvage pathway, is common in breast cancer cells, and more so in triple negative breast cancer (TNBC) cells. Targeting the salvage pathway has been pursued for cancer therapy.

View Article and Find Full Text PDF

Glioblastomas (GBM) are malignant tumours with poor prognosis. Treatment involves chemotherapy and/or radiotherapy; however, there is currently no standard treatment for recurrence, and prognosis remains unfavourable. Inflammatory mediators and microRNAs (miRNAs) influence the aggressiveness of GBM, being involved in the communication with the cells of the tumour parenchyma, including microglia/macrophages, and maintaining an immunosuppressive microenvironment.

View Article and Find Full Text PDF

LINC01271 promotes fracture healing via regulating miR-19a-3p/PIK3CA axis.

J Orthop Surg Res

January 2025

Division of Orthopaedic Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Baiyun District, Guangzhou, 510515, Guangdong, China.

Objective: Osteoporosis increases the risk of fragility fractures, impacting patients' lives. This study aimed to investigate whether LINC01271 was involved in the process of fragility fractures and healing, providing a new perspective for its diagnosis and treatment.

Methods: This study included 94 healthy individuals, 82 patients with osteoporosis, and 85 patients with fragility fractures as subjects.

View Article and Find Full Text PDF

Cigarette smoke extract induces p38-mediated expression and ROS/rho-mediated translocation of alpha 2C adrenoceptor in human microvascular smooth muscle cells.

Prog Cardiovasc Dis

January 2025

Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar. Electronic address:

Raynaud's phenomenon (RP) is a vascular disease characterized by exaggerated vasoconstriction in response to stressors, mainly cold and emotional stress. This vasoconstriction is mediated solely by alpha 2C-adrenoceptors (α-AR) expressed in vascular smooth muscle cells of dermal arterioles. Several factors, among which is cigarette smoking, are associated with aggravated symptoms of and increased risk for RP.

View Article and Find Full Text PDF

Purpose: Sulfur mustard gas (SM) exposure to eyes causes multiple corneal injuries including stromal cell loss in vivo. However, mechanisms mediating stromal cell loss/death remains elusive. This study sought to test the novel hypothesis that SM-induced toxicity to human corneal stromal fibroblasts involves ferroptosis mechanism via p38 MAPK signaling.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!