A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Targeted Magnetic Nanoparticles for Remote Magnetothermal Disruption of Amyloid-β Aggregates. | LitMetric

Remotely triggered hysteretic heat dissipation by magnetic nanoparticles (MNPs) selectively attached to targeted proteins can be used to break up self-assembled aggregates. This magnetothermal approach is applied to the amyloid-β (Aβ) protein, which forms dense, insoluble plaques characteristic of Alzheimer's disease. Specific targeting of dilute MNPs to Aβ aggregates is confirmed via transmission electron microscopy (TEM) and is found to be consistent with a statistical model of MNP distribution on the Aβ substrates. MNP composition and size are selected to achieve efficient hysteretic power dissipation at physiologically safe alternating magnetic field (AMF) conditions. Dynamic light scattering, fluorescence spectroscopy, and TEM are used to characterize the morphology and size distribution of aggregates before and after exposure to AMF. A dramatic reduction in aggregate size from microns to tens of nanometers is observed, suggesting that exposure to an AMF effectively destabilizes Aβ deposits decorated with targeted MNPs. Experiments in primary hippocampal neuronal cultures indicate that the magnetothermal disruption of aggregates reduces Aβ cytotoxicity, which may enable future applications of this approach for studies of protein disaggregation in physiological environments.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adhm.201500487DOI Listing

Publication Analysis

Top Keywords

magnetic nanoparticles
8
magnetothermal disruption
8
exposure amf
8
aggregates
5
5
targeted magnetic
4
nanoparticles remote
4
remote magnetothermal
4
disruption amyloid-β
4
amyloid-β aggregates
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!