The successful synthesis of H2O@C60 makes possible the study of magnetic interactions of an isolated water molecule in a geometrically well-defined hydrophobic environment. Comparisons are made between the T1 values of H2O@C60 and the previously studied H2@C60 and their nitroxide derivatives. The value of T1 is approximately six times longer for H2O@C60 than for H2@C60 at room temperature, is independent of solvent viscosity or polarity, and increases monotonically with decreasing temperature, implying that T1 is dominated by the spin-rotation interaction. Paramagnetic nitroxides, either attached covalently to the C60 cage or added to the medium, produce strikingly similar T1 enhancements for H2O@C60 and H2@C60 that are consistent with through-space interaction between the internal nuclear spins and the external electron spin. This indicates that it should be possible to apply to the endo-H2O molecule the same methodologies for manipulating the ortho and para spin isomers that have proven successful for H2@C60.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jz3002794DOI Listing

Publication Analysis

Top Keywords

h2o@c60 h2@c60
12
h2@c60 nitroxide
8
nitroxide derivatives
8
h2o@c60
5
h2@c60
5
comparison nuclear
4
nuclear spin
4
spin relaxation
4
relaxation h2o@c60
4
derivatives successful
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!