Epidemics and outbreaks caused by infections of several subgenotypes of EV71 and other serotypes of coxsackie A viruses have raised serious public health concerns in the Asia-Pacific region. These concerns highlight the urgent need to develop a scalable manufacturing platform for producing an effective and sufficient quantity of vaccines against deadly enteroviruses. In this report, we present a platform for the large-scale production of a vaccine based on the inactivated EV71(E59-B4) virus. The viruses were produced in Vero cells in a 200 L bioreactor with serum-free medium, and the viral titer reached 10(7) TCID50/mL 10 days after infection when using an MOI of 10(-4). The EV71 virus particles were harvested and purified by sucrose density gradient centrifugation. Fractions containing viral particles were pooled based on ELISA and SDS-PAGE. TEM was used to characterize the morphologies of the viral particles. To evaluate the cross-protective efficacy of the EV71 vaccine, the pooled antigens were combined with squalene-based adjuvant (AddaVAX) or aluminum phosphate (AlPO4) and tested in human SCARB2 transgenic (Tg) mice. The Tg mice immunized with either the AddaVAX- or AlPO4-adjuvanted EV71 vaccine were fully protected from challenges by the subgenotype C2 and C4 viruses, and surviving animals did not show any degree of neurological paralysis symptoms or muscle damage. Vaccine treatments significantly reduced virus antigen presented in the central nervous system of Tg mice and alleviated the virus-associated inflammatory response. These results strongly suggest that this preparation results in an efficacious vaccine and that the microcarrier/bioreactor platform offers a superior alternative to the previously described roller-bottle system.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4543551 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0136420 | PLOS |
Background: The limited efficacy of the two recently approved malaria vaccines, RTS,S/AS01 and R21/Matrix- M™, highlights the need for alternative vaccine candidate genes. Plasmodium falciparum Reticulocyte Binding Protein Homologue 5 (Pfrh5) is a promising malaria vaccine candidate, given its limited polymorphism, its essential role in parasite survival, a lack of immune selection pressure and higher efficacy against multiple parasites strains. This study evaluated the genetic diversity of Pfrh5 gene among parasites from regions with varying malaria transmission intensities in Mainland Tanzania, to generate baseline data for this potential malaria vaccine candidate.
View Article and Find Full Text PDFBraz J Microbiol
January 2025
ICAR - Indian Veterinary Research Institute, Bengaluru, 560 024, Karnataka, India.
Developing an effective vaccine for haemorrhagic septicaemia (HS) in cattle and buffaloes is urgently needed. While preferred for their safety, achieving sufficient, cross-protective, and long-lasting immunity is still challenging when administering inactivated vaccines. This study aimed to assess the efficacy of four inactivating components comprising three inactivating agents: (1) Binary ethylenimine (BEI), (2) Formalin, (3) a combination of BEI and Formalin, and (4) Hydrogen peroxide (HO), in inactivating Pasteurella multocida to enhance HS vaccine potency.
View Article and Find Full Text PDFAdv Mater
January 2025
Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China.
Recombinant adeno-associated viruses (rAAVs) have emerged as promising vaccine vectors due to their enduring efficacy with a single dose. However, insufficient cellular immune responses and the random and non-specific distribution of AAVs post-injection may hinder the development of AAV vaccines. Here, a novel Pickering emulsion platform stabilized by biomineralized manganese nanoparticles and aluminum hydroxide, which can rapidly and efficiently load AAVs, is reported.
View Article and Find Full Text PDFVirulence
December 2025
State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China.
Multiple porcine reproductive and respiratory syndrome virus (PRRSV) subtypes coinfect numerous pig farms in China, and commercial PRRSV vaccines offer limited cross-protection against heterologous strains. Our previous research confirmed that a PRRSV lineage 1 branch attenuated live vaccine (SD-R) provides cross-protection against HP-PRRSV, NADC30-like PRRSV and NADC34-like PRRSV. HP-PRRSV has undergone significant genetic variation following nearly two decades of evolution and has transformed into a subtype referred to as HP-like PRRSV, which also exhibits high pathogenicity.
View Article and Find Full Text PDFVaccines (Basel)
December 2024
Department of Avian Diseases, College of Veterinary Medicine and Center for Avian Disease, Jeonbuk National University, Iksan 54596, Republic of Korea.
Duck virus hepatitis (DVH), caused by duck hepatitis A virus (DHAV), poses significant challenges to duck farming due to high mortality rates in young ducklings. Despite the widespread use of live attenuated vaccines, the genetic diversity within DHAV strains has diminished their cross-protection efficacy. This study aimed to evaluate the cross-protective efficacy of current DHAV-1 and DHAV-3 vaccines against genetically divergent wild strains.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!