Microbes perform many costly biological functions that benefit themselves, and may also benefit neighbouring cells. Losing the ability to perform such functions can be advantageous due to cost savings, but when they are essential for growth, organisms become dependent on ecological partners to compensate for those losses. When multiple functions may be lost, the ecological outcomes are potentially diverse, including independent organisms only; one-way dependency, where one partner performs all functions and others none; or mutual interdependency where partners perform complementary essential functions. What drives these different outcomes? We develop a model where organisms perform 'leaky' functions that provide both private and public benefits to explore the consequences of privatization level, costs and essentiality on influencing these outcomes. We show that mutual interdependency is favoured at intermediate levels of privatization for a broad range of conditions. One-way dependency, in contrast, is only favoured when privatization is low and loss-of-function benefits are accelerating. Our results suggest an interplay between privatization level and shape of benefits from loss in driving microbial dependencies. Given the ubiquity of microbial functions that are inevitably leaked and the ease of mutational inactivation, our findings may help to explain why microbial interdependencies are common in nature.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/1462-2920.13028 | DOI Listing |
Brief Bioinform
November 2024
College of Communication Engineering, Jilin University, No. 2699 Qianjin Street, Chaoyang District, Changchun 130012, China.
Antibiotic resistance poses a significant threat to global health, making the development of alternative strategies to combat bacterial pathogens increasingly urgent. One such promising approach is the strategic use of bacteriophages (or phages) to specifically target and eradicate antibiotic-resistant bacteria. Phages, being among the most prevalent life forms on Earth, play a critical role in maintaining ecological balance by regulating bacterial communities and driving genetic diversity.
View Article and Find Full Text PDFComp Biochem Physiol Part D Genomics Proteomics
December 2024
Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, People's Republic of China. Electronic address:
The intestinal microbiota plays a crucial role in the health and development of fish, engaging in intricate interactions with the host organism. As a significant species in aquaculture, Lateolabrax japonicus serves as an exemplary model for investigating these interactions and their subsequent effects on growth and health. This study utilized a multi-omics approach, incorporating metagenomic sequencing and non-targeted metabolomics, to delineate the gut microbiota and metabolome of L.
View Article and Find Full Text PDFJ Hazard Mater
December 2024
Institute of Translational Pharmacology (IFT), National Research Council (CNR), Via Ugo La Malfa 153, Palermo 90146, Italy. Electronic address:
The innate immune system is the first player involved in the recognition/interaction with nanomaterials. Still, it is not the only system involved. The co-evolution of the microbiota with the innate immune system built an interdependence regulating immune homeostasis that is poorly studied.
View Article and Find Full Text PDFForensic Sci Int
December 2024
School of Life and Environmental Sciences, Deakin University, Geelong, VIC 3216, Australia.
Recent conceptual and empirical developments in decomposition research have highlighted the intricate dynamics within necrobiome communities and the roles of various decay drivers. Yet the interactions between these factors and their regulatory mechanisms remain relatively unexplored. A comprehensive understanding of this facet of decomposition science is important, given its broad applicability across ecological and forensic disciplines, and current lack of research which investigates the inter-dependencies between two critical components of the necrobiome (the microbiome and insect activity), and the consequences of this interdependency on mass loss and total body score.
View Article and Find Full Text PDFGeobiology
November 2024
Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona, USA.
The importance of biota to soil formation and landscape development is widely recognized. As biotic complexity increases during early succession via colonization by soil microbes followed by vascular plants, effects of biota on mineral weathering and soil formation become more complex. Knowledge of the interactions among groups of organisms and environmental conditions will enable us to better understand landscape evolution.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!