A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Ag-Modified In₂O₃/ZnO Nanobundles with High Formaldehyde Gas-Sensing Performance. | LitMetric

Ag-Modified In₂O₃/ZnO Nanobundles with High Formaldehyde Gas-Sensing Performance.

Sensors (Basel)

Beijing National Center for Electron Microscopy, School of Materials Science and Engineering, The State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials (MOE), Tsinghua University, Beijing 100084, China.

Published: August 2015

Ag-modified In2O3/ZnO bundles with micro/nano porous structures have been designed and synthesized with by hydrothermal method continuing with dehydration process. Each bundle consists of nanoparticles, where nanogaps of 10-30 nm are present between the nanoparticles, leading to a porous structure. This porous structure brings high surface area and fast gas diffusion, enhancing the gas sensitivity. Consequently, the HCHO gas-sensing performance of the Ag-modified In2O3/ZnO bundles have been tested, with the formaldehyde-detection limit of 100 ppb (parts per billion) and the response and recover times as short as 6 s and 3 s, respectively, at 300 °C and the detection limit of 100 ppb, response time of 12 s and recover times of 6 s at 100 °C. The HCHO sensing detect limitation matches the health standard limitation on the concentration of formaldehyde for indoor air. Moreover, the strategy to synthesize the nanobundles is just two-step heating and easy to scale up. Therefore, the Ag-modified In2O3/ZnO bundles are ready for industrialization and practical applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4570411PMC
http://dx.doi.org/10.3390/s150820086DOI Listing

Publication Analysis

Top Keywords

ag-modified in2o3/zno
12
in2o3/zno bundles
12
gas-sensing performance
8
performance ag-modified
8
porous structure
8
limit 100
8
100 ppb
8
recover times
8
ag-modified
4
ag-modified in₂o₃/zno
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!