Inhibition of Cytosolic Phospholipase A2α (cPLA2α) by Medicinal Plants in Relation to Their Phenolic Content.

Molecules

Institute of Pharmacy and Molecular Biotechnology, University of Heidelberg, Im Neuenheimer Feld 364, Heidelberg 69120, Germany.

Published: August 2015

The cytosolic phospholipase A2α(cPLA2α) is one of the potential targets for anti-inflammatory drugs, since this enzyme plays a key role in the inflammation processes seen in health disorders, like asthma, allergic reactions, arthritis and neuronal diseases. In this study, cPLA2α inhibition by 43 methanol extracts from medicinal plants rich in polyphenols was determined. The eight most active extracts were derived from Ribes nigrum (IC50 of 27.7 μg/mL), Ononis spinosa (IC50 of 39.4 μg/mL), Urtica dioica (IC50 of 44.32 μg/mL), Betula sp. (IC50 of 58.02 μg/mL), Sanguisorba officinalis (IC50 of 76.25 μg/mL), Orthosiphon stamineus (IC50 of 78.83 μg/mL), Petasites hybridus (IC50 of 81.02 μg/mL) and Tussilago farfara (IC50 of 123.28 μg/mL). Additionally, the antioxidant activities of these extracts were determined with the 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay and their phenolic content with the Folin-Ciocalteu reagent. Antioxidant activity showed a non-linear, positive correlation to the phenolic content, but no correlation of PLA2 inhibition with phenolic content could be established. This study provides evidence that cPLA2α may be a relevant target for anti-inflammatory agents.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6331921PMC
http://dx.doi.org/10.3390/molecules200815033DOI Listing

Publication Analysis

Top Keywords

phenolic content
16
cytosolic phospholipase
8
medicinal plants
8
ic50
8
μg/ml
8
inhibition cytosolic
4
phospholipase a2α
4
a2α cpla2α
4
cpla2α medicinal
4
plants relation
4

Similar Publications

In this work, artificial neural network coupled with multi-objective genetic algorithm (ANN-NSGA-II) has been used to develop a model and optimize the conditions for the extracting of the Mentha longifolia (L.) L. plant.

View Article and Find Full Text PDF

The comparison of the antioxidant, antibacterial and antiviral potential of Polish fir honeydew and Manuka honeys.

Sci Rep

December 2024

Department of Chemistry and Food Toxicology, Institute of Food Technology and Nutrition, University of Rzeszow, Ćwiklińskiej 1a St, Rzeszow, 35-601, Poland.

The aim of the present study was to compare the antioxidant, antibacterial and antiviral activities of Podkarpackie coniferous honeydew honey and Manuka honey. The quality of tested honey samples (honeydew-12 and Manuka-4) regarding honey standard was evaluated as well as additional indicators (methylglyoxal, total phenolics and HPTLC phenolic profile, antioxidant potential, glucose oxidase activity, and hydrogen peroxide) were compared. Antibacterial potential was analyzed against Gram-positive (S.

View Article and Find Full Text PDF

Bisphenol A (BPA) is a chemical produced in large quantities for use primarily in the production of polycarbonate plastics, which has risks for human health. This study aimed to investigate BPA contents in canned fruit and vegetable samples using Gas Chromatography-Mass Spectrometry (GC-MS). Furthermore, health risks were assessed for Iranian adults and children using Monte Carlo simulations.

View Article and Find Full Text PDF

Nutritional value, HPLC-DAD analysis and biological activities of Ceratonia siliqua L. pulp based on in vitro and in silico studies.

Sci Rep

December 2024

Agri-food Technology and Quality Laboratory, Regional Centre of Agricultural Research of Tadla, National Institute of Agricultural research (INRA), Avenue Ennasr, BP 415 Rabat principal, Rabat, 10090, Morocco.

The phytochemical, nutritional, and biological features of wild carob pulp from Tanzight (TN), Ait-Waada (AW), and Tizi-ghnayn (TG) in Azilal were studied. The results of the study reveal that the carob pulp examined has a low-fat level. AW had the most total sugar (78.

View Article and Find Full Text PDF

Anti-aflatoxin potential of phenolic compounds from common beans (Phaseolus vulgaris L.).

Food Chem

December 2024

Centro para Investigaciones en Granos y Semillas, Universidad de Costa Rica, 11501 San Pedro, San José, Costa Rica. Electronic address:

Common beans (Phaseolus vulgaris L.) are widely consumed legumes in Latin America and Africa, valued for their nutritional compounds and antioxidants. Their high polyphenol content contributes to the antioxidant properties, with bioactive compounds showing antifungal and antimycotoxin effects.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!