Mimosine Dipeptide Enantiomsers: Improved Inhibitors against Melanogenesis and Cyclooxygenase.

Molecules

Department of Bioscience and Biotechnology, Faculty of Agriculture, University of the Ryukyus, Senbaru 1, Nishihara-cho, Okinawa 903-0213, Japan.

Published: August 2015

Melanogenesis plays an important role in the protection of skin against UV through production of melanin pigments, but abnormal accumulation of this pigment causes unaesthetic hyperpigmentation. Much effort is being made to develop effective depigmenting agents. Here, we show for the first time that a small library of mimosine dipeptide enantiomers (Mi-L/D-amino acid) inhibit the melanogenesis in B16F10 melanoma cells by down-regulating the cellular tyrosinase with little effect on their growth or viability. Two of them, Mi-D-Trp and Mi-D-Val, turned out to be the most potent inhibitors on melanin content and cellular tyrosinase in B16F10 melanoma cells. In addition, most of the mimosine dipeptides were more potent than mimosine for inhibiting cyclooxygenase 1 (COX-1) with IC50 of 18-26 μM. Among them, Mi-L-Val and Mi-L-Trp inhibited cyclooxygenase 2 (COX-2) more potently than indomethacin, with IC50 values of 22 and 19 μM, respectively. Taken together, our results suggest the possibility that mimosine dipeptides could be better candidates (than mimosine) for anti-melanogenic (skin hyperpigmentation treatment) and cyclooxygenase (COX) inhibition.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6332029PMC
http://dx.doi.org/10.3390/molecules200814334DOI Listing

Publication Analysis

Top Keywords

mimosine dipeptide
8
b16f10 melanoma
8
melanoma cells
8
cellular tyrosinase
8
mimosine dipeptides
8
mimosine
6
dipeptide enantiomsers
4
enantiomsers improved
4
improved inhibitors
4
inhibitors melanogenesis
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!