Using nonresonant second harmonic generation spectroscopy, we have monitored the change in surface charge density of the silica/water interface over a broad pH range in the presence of different alkali chlorides. Planar silica is known to possess two types of surface sites with pKa values of ∼4 and ∼9, which are attributed to different solvation environments of the silanols. We report that varying the alkali chloride electrolyte significantly changes the effective acid dissociation constant (pKa(eff)) for the less acidic silanol groups, with the silica/NaClaq and silica/CsClaq interfaces exhibiting the lowest and highest pKa(eff) values of 8.3(1) and 10.8(1), respectively. Additionally, the relative populations of the two silanol groups are also very sensitive to the electrolyte identity. The greatest percentage of acidic silanol groups was 60(2)% for the silica/LiClaq interface in contrast to the lowest value of 20(2)% for the silica/NaClaq interface. We attribute these changes in the bimodal behavior to the influence of alkali ions on the interfacial water structure and its corresponding effect on surface acidity.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jz300255xDOI Listing

Publication Analysis

Top Keywords

silanol groups
12
silica/water interface
8
acidic silanol
8
specific cation
4
cation effects
4
effects bimodal
4
bimodal acid-base
4
acid-base behavior
4
behavior silica/water
4
interface
4

Similar Publications

Diatom biosilica for liquid chromatography.

J Chromatogr A

December 2024

Nicolaus Copernicus University in Toruń, Interdisciplinary Centre of Modern Technologies, Wileńska 4, 87-100, Toruń, Poland; Nicolaus Copernicus University in Toruń, Faculty of Chemistry, Department of Environmental Chemistry and Bioanalytics, Gagarina 7, PL-87-100 Toruń, Poland; Prof. Jan Czochralski Kuyavian-Pomeranian Research & Development Centre, Krasińskiego Str. 4, 87-100 Toruń, Poland. Electronic address:

This work presents, for the first time, the preparation method and subsequent use of biosilica in column liquid chromatography in reverse-phase mode. Diatom biosilica consists of the siliceous exoskeletons (frustules) of unicellular algae. Controlled cultivation of Pseudostaurosira trainorii diatoms resulted in frustules with an average diameter of approximately 4 µm, sidewall thickness of 1 µm, and a bottom thickness of 110-150 nm.

View Article and Find Full Text PDF

Multipurpose adsorption applications of boron-doped and amino-functionalized magnetic mesoporous silica nanocomposite.

Environ Sci Pollut Res Int

December 2024

Department of Chemistry, Faculty of Arts and Sciences, Bursa Uludag University, 16059, Bursa, Turkey.

In this study, boron-doped magnetic mesoporous silica nanocomposite was prepared through the hydrothermal synthesis procedure followed by post modification with -NH groups. The higher surface area, more ordered mesoporous structure, and higher surface charge density obtained by boron doping and amino functionalization contributed to the use of nanocomposite for multipurpose application functions. When used as an adsorbent for light green (LG) anionic dye, boron-doped nanocomposite exhibited higher adsorption capacity (105.

View Article and Find Full Text PDF

Isolating Al Surface Sites in Amorphous Silica-Alumina by Homogeneous Deposition of Al on SiO Nanoparticles.

ACS Appl Nano Mater

November 2024

Laboratory of Inorganic Materials and Catalysis, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, PO Box 513, Eindhoven, MB 5600, the Netherlands.

Well-defined amorphous silica-alumina (ASA) with a relatively low Al loading were synthesized by homogeneous deposition-precipitation of Al on SiO nanoparticles to understand the nature and formation of Brønsted acid sites (BAS). The amount of Al grafted relative to the silanol density was varied by variation of the size of SiO nanoparticles, reflected by their surface areas between 90 and 380 m·g. Two sets of ASA were synthesized, one aiming at a SiOH/Al ratio of 3, corresponding to the maximum amount of BAS represented by Al perturbation of SiOH groups, and the second one aimed at studying the impact of Al dispersion by using a constant Al loading (Si/Al ≈ 103).

View Article and Find Full Text PDF

This study presents an innovative approach to utilize coal gasification coarse slag (CGCS) for efficient and low-cost gallium extraction. Using a one-step acid leaching process, mesoporous silica with a surface area of 258 m/g and a pore volume of 0.15 cm/g was synthesized.

View Article and Find Full Text PDF

Molecular Structure of Omniphobic, Surface-Grafted Polydimethylsiloxane Chains.

Small

November 2024

Department of Mechanical & Industrial Engineering, University of Toronto, 5 King's College Rd, Toronto, Ontario, M5S 3G8, Canada.

The unique surface properties of grafted polydimethylsiloxane (PDMS) chains, particularly their omniphobicity and low friction, are influenced by molecular structure and tethering density. Despite molecularly smoothness and homogeneity, these surfaces exhibit significant variability in wettability and contact angle hysteresis (CAH). This work uncovers the molecular structure of grafted PDMS chains.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!