Repression of Esophageal Neoplasia and Inflammatory Signaling by Anti-miR-31 Delivery In Vivo.

J Natl Cancer Inst

Department of Molecular Virology, Immunology, and Medical Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, OH (CT, MG, GDL, HA, PF, JM, CMC); Kimmel Cancer Center (HC, YJ, KJS, LYF) and Department of Pathology, Anatomy, and Cell Biology (YJ, JLF, LYF), Thomas Jefferson University, Philadelphia, PA; Center for Genome Research (CT, GMT), Department of Life Sciences (TS), University of Modena and Reggio Emilia, Modena, Italy (CT, GMT); Transcriptional Networks in Lung Cancer Group, Manchester Institute, University of Manchester, UK (MG, SN).

Published: November 2015

AI Article Synopsis

Article Abstract

Background: Overexpression of microRNA-31 (miR-31) is implicated in the pathogenesis of esophageal squamous cell carcinoma (ESCC), a deadly disease associated with dietary zinc deficiency. Using a rat model that recapitulates features of human ESCC, the mechanism whereby Zn regulates miR-31 expression to promote ESCC is examined.

Methods: To inhibit in vivo esophageal miR-31 overexpression in Zn-deficient rats (n = 12-20 per group), locked nucleic acid-modified anti-miR-31 oligonucleotides were administered over five weeks. miR-31 expression was determined by northern blotting, quantitative polymerase chain reaction, and in situ hybridization. Physiological miR-31 targets were identified by microarray analysis and verified by luciferase reporter assay. Cellular proliferation, apoptosis, and expression of inflammation genes were determined by immunoblotting, caspase assays, and immunohistochemistry. The miR-31 promoter in Zn-deficient esophagus was identified by ChIP-seq using an antibody for histone mark H3K4me3. Data were analyzed with t test and analysis of variance. All statistical tests were two-sided.

Results: In vivo, anti-miR-31 reduced miR-31 overexpression (P = .002) and suppressed the esophageal preneoplasia in Zn-deficient rats. At the same time, the miR-31 target Stk40 was derepressed, thereby inhibiting the STK40-NF-κΒ-controlled inflammatory pathway, with resultant decreased cellular proliferation and activated apoptosis (caspase 3/7 activities, fold change = 10.7, P = .005). This same connection between miR-31 overexpression and STK40/NF-κΒ expression was also documented in human ESCC cell lines. In Zn-deficient esophagus, the miR-31 promoter region and NF-κΒ binding site were activated. Zn replenishment restored the regulation of this genomic region and a normal esophageal phenotype.

Conclusions: The data define the in vivo signaling pathway underlying interaction of Zn deficiency and miR-31 overexpression in esophageal neoplasia and provide a mechanistic rationale for miR-31 as a therapeutic target for ESCC.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4675101PMC
http://dx.doi.org/10.1093/jnci/djv220DOI Listing

Publication Analysis

Top Keywords

mir-31 overexpression
16
mir-31
12
esophageal neoplasia
8
human escc
8
mir-31 expression
8
zn-deficient rats
8
cellular proliferation
8
mir-31 promoter
8
zn-deficient esophagus
8
overexpression
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!