Unlabelled: Ovococci form a morphological group that includes several human pathogens (enterococci and streptococci). Their shape results from two modes of cell wall insertion, one allowing division and one allowing elongation. Both cell wall synthesis modes rely on a single cytoskeletal protein, FtsZ. Despite the central role of FtsZ in ovococci, a detailed view of the in vivo nanostructure of ovococcal Z-rings has been lacking thus far, limiting our understanding of their assembly and architecture. We have developed the use of photoactivated localization microscopy (PALM) in the ovococcus human pathogen Streptococcus pneumoniae by engineering spDendra2, a photoconvertible fluorescent protein optimized for this bacterium. Labeling of endogenously expressed FtsZ with spDendra2 revealed the remodeling of the Z-ring's morphology during the division cycle at the nanoscale level. We show that changes in the ring's axial thickness and in the clustering propensity of FtsZ correlate with the advancement of the cell cycle. In addition, we observe double-ring substructures suggestive of short-lived intermediates that may form upon initiation of septal cell wall synthesis. These data are integrated into a model describing the architecture and the remodeling of the Z-ring during the cell cycle of ovococci.

Importance: The Gram-positive human pathogen S. pneumoniae is responsible for 1.6 million deaths per year worldwide and is increasingly resistant to various antibiotics. FtsZ is a cytoskeletal protein polymerizing at midcell into a ring-like structure called the Z-ring. FtsZ is a promising new antimicrobial target, as its inhibition leads to cell death. A precise view of the Z-ring architecture in vivo is essential to understand the mode of action of inhibitory drugs (see T. den Blaauwen, J. M. Andreu, and O. Monasterio, Bioorg Chem 55:27-38, 2014, doi:10.1016/j.bioorg.2014.03.007, for a review on FtsZ inhibitors). This is notably true in ovococcoid bacteria like S. pneumoniae, in which FtsZ is the only known cytoskeletal protein. We have used superresolution microscopy to obtain molecular details of the pneumococcus Z-ring that have so far been inaccessible with conventional microscopy. This study provides a nanoscale description of the Z-ring architecture and remodeling during the division of ovococci.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4542196PMC
http://dx.doi.org/10.1128/mBio.01108-15DOI Listing

Publication Analysis

Top Keywords

cell cycle
12
cell wall
12
cytoskeletal protein
12
remodeling z-ring
8
streptococcus pneumoniae
8
photoactivated localization
8
localization microscopy
8
wall synthesis
8
ftsz
8
human pathogen
8

Similar Publications

Prostate cancer (PCa) is a highly common type of malignancy and affects millions of men in the world since it is easy to recur or emerge therapy resistance. Therefore, it is urgent to find novel treatments for PCa patients. In the current study, we found that tegaserod maleate (TM), an FDA-approved agent, inhibited proliferation, colony formation, migration as well as invasion, caused the arrest of the cell cycle, and promoted apoptosis of PCa cells in vitro.

View Article and Find Full Text PDF

Sex reversal induced by 17β-estradiol may be achieved by regulating the neuroendocrine system of the Pacific white shrimp Penaeus vannamei.

BMC Genomics

January 2025

Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.

Background: Due to sexual dimorphism in growth of penaeid shrimp, all-female cultivation is desirable for the aquaculture industry. 17β-estradiol (E2) has the potential to induce the male-to-female sex reversal of decapod species. However, the mechanisms behind it remain poorly understood.

View Article and Find Full Text PDF

Optimization of the intron sequences combined with the CMV promoter increases recombinant protein expression in CHO cells.

Sci Rep

January 2025

International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, China.

To meet the requirements of the biopharmaceutical industry, improving the yield of recombination therapeutic protein (RTP) from Chinese hamster ovary (CHO) cells is necessary. The human cytomegalovirus (CMV) promoter is widely used for RTP expression in CHO cells. To further improve RTP production, we truncated the human CMV intron and further evaluated the effect of four synthetic introns, including ctEF-1α first, EF-1α first, chimeric, and β-globin introns combined with the CMV promoter on recombinant expression levels in transient and stably recombinant CHO cells.

View Article and Find Full Text PDF

Diffuse large B-cell lymphoma (DLBCL) is characterized by its aggressive nature and resistance to standard chemotherapy, necessitating the development of new therapeutic approaches. The emergence of natural products and their derivatives has notably influenced cancer treatment, making morusinol, a medicine-derived monomer, a promising candidate. Here, we showed that morusinol exerted antitumor effects on DLBCL in vitro by inducing apoptosis and cell cycle arrest.

View Article and Find Full Text PDF

Pivotal roles of Plasmodium falciparum lysophospholipid acyltransferase 1 in cell cycle progression and cytostome internalization.

Commun Biol

January 2025

Department of Cellular Architecture Studies, Division of Shionogi Global Infectious Diseases Division, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan.

The rapid intraerythrocytic replication of Plasmodium falciparum, a deadly species of malaria parasite, requires a quick but constant supply of phospholipids to support marked cell membrane expansion. In the malarial parasite, many enzymes functioning in phospholipid synthesis pathway have not been identified or characterized. Here, we identify P.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!