We report the first visible spectrum of a heme-protein in the gas phase. The aim of this work was to provide a reference for the optical absorption of an isolated heme-protein to better understand the influence of protein conformation and fluctuation and of solvent on its optical properties. After laser irradiation of gas-phase cytochrome c (cyt c), electron emission is observed. Electron photodetachment yield of cyt c 6- was recorded in the region of the Soret band of the porphyrin group, showing a maximum at 410 nm. Our results are compared with optical spectra of gas-phase heme and of cyt c in solution. We discuss the influence of the polypeptide chain and of the solvent on both the position and the broadening of the Soret band. Action spectrum of gas-phase cyt c is close to the absorption of native cyt c in solution, suggesting an efficient protection of the heme group from solvent accessibility by the polypeptide chain and similar interactions between the two moieties in solution and the gas phase.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jz300070rDOI Listing

Publication Analysis

Top Keywords

soret band
12
gas phase
8
cyt solution
8
polypeptide chain
8
cyt
5
gas-phase
4
band gas-phase
4
gas-phase ferri-cytochrome
4
ferri-cytochrome report
4
report visible
4

Similar Publications

The tetrapyrrolic macrocycle as a scaffold for various chemical modifications provides broad opportunities for the preparation of complex multifunctional conjugates suitable for binary antitumor therapies. Typically, illumination with monochromatic light triggers the photochemical generation of reactive oxygen species (ROS) (photodynamic effect). However, more therapeutically valuable effects can be achieved upon photoactivation of tetrapyrrole derivatives.

View Article and Find Full Text PDF

The ferryl state in globins has previously been reported to undergo a protonation event below pH 5, as assessed using pH jump experiments with stopped-flow UV-Vis spectroscopy. This protonation entails hypsochromic shifts in the α and β bands (~ 20 to 40 nm) and an ~ 10 nm reduction in the energy difference between these two bands. We now report that in Mb this event is also characterized by a hypsochromic shift in the Soret band (~ 5 nm).

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on synthesizing two new compounds called pentafluorophenyl-N-confused porphyrins (PFNCPs), one with acetylacetonate and the other with ylidene-2-propanone, through a simple one-pot reaction without a catalyst.
  • The research demonstrates that the acetylacetonate-substituted PFNCP undergoes chemical changes under mild acidic conditions, producing a new derivative when chelated with boron, while the other compound shows a unique electrocyclic reaction resulting in a tricyclic product.
  • Characterization of these compounds was achieved using various techniques, including X-ray crystallography and spectroscopy, with additional theoretical studies conducted
View Article and Find Full Text PDF

Here two AB type corrole has been synthesized and solubilized in water via pluronic micellar system by avoiding the utmost mandatory multistep non-environment friendly strategies for bringing hydrophobic non-ionic corroles in aqueous medium. Both the corroles were extremely insoluble in water as no absorption spectra of corrole was available in water. However, corrole 2 in the aqueous solution of F127 exhibit characteristic Soret and Q bands due to efficient solubilization of corrole in F127, the micelles formed by block copolymer act as a "cargo hold" for the corrole molecules.

View Article and Find Full Text PDF

Sn(IV) complex of N-Confused Porphyrin (Sn(IV)-NCP) has been prepared and characterized by several spectroscopic techniques to verify its structure and purity. Sn(IV)-NCP shows a red shift in both the Soret and Q bands compared to the free base NCTPP. The last Q band appears in the NIR region.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!