Myocyte enhancer factor (Mef)-2 transcription factors are implicated in activity-dependent neuronal processes during development, but the role of MEF2 in neural stem/progenitor cells (NSPCs) in the adult brain is unknown. We used a transgenic mouse in which Mef2a, -c, and -d were inducibly deleted in adult nestin-expressing NSPCs and their progeny. Recombined cells in the hippocampal granule cell layer were visualized and quantified by yellow fluorescent protein (YFP) expression. In control mice, postmitotic neurons expressed Mef2a, -c, and -d, whereas type 1 stem cells and proliferating progenitors did not. Based on this expression, we hypothesized that Mef2a, -c, and -d deletion in adult nestin-expressing NSPCs and their progeny would result in fewer mature neurons. Control mice revealed an increase in YFP(+) neurons and dendrite formation over time. Contrary to our hypothesis, inducible Mef2 KO mice also displayed an increase in YFP(+) neurons over time-but with significantly stunted dendrites-suggesting an uncoupling of neuron survival and dendritogenesis. We also found non-cell-autonomous effects after Mef2a, -c, and -d deletion. These in vivo findings indicate a surprising functional role for Mef2a, -c, and -d in cell- and non-cell-autonomous control of adult hippocampal neurogenesis that is distinct from its role during development.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4653059PMC
http://dx.doi.org/10.1096/fj.15-275651DOI Listing

Publication Analysis

Top Keywords

stem/progenitor cells
8
adult nestin-expressing
8
nestin-expressing nspcs
8
nspcs progeny
8
control mice
8
mef2a deletion
8
increase yfp+
8
yfp+ neurons
8
mef2a
6
inducible knockout
4

Similar Publications

Interferon types-I/II (IFN-αβ/γ) secretions are well-established antiviral host defenses. The human immunodeficiency virus (HIV) particles are known to prevail following targeted cellular interferon secretion. CD4 T-lymphocytes are the primary receptor targets for HIV entry, but the virus has been observed to hide (be latent) successfully in these cells through an alternate entry route via interactions with LFA1.

View Article and Find Full Text PDF

The advent of bioprinting has enabled the creation of precise three-dimensional (3D) cell cultures suitable for biomimetic in vitro models. In this study, we developed a novel protocol for 3D printing methacrylated collagen (ColMa, or PhotoCol®) combined with tendon stem/progenitor cells (hTSPCs) derived from human tendon explants. Although pure ColMa has not previously been proposed as a printable hydrogel, this paper outlines a robust and highly reproducible pipeline for bioprinting this material.

View Article and Find Full Text PDF

Endometriosis is an estrogen-dependent benign disease characterized by growth of the endometrial tissue outside the uterine wall. Several reports suggest the possibility of the pathogenesis and recurrence of endometriosis being related to functions of stem/progenitor cells of the endometrium. The drawback of the widely used method of using Hoechst 33342, a fluorescent dye, to collect stem cell-like populations, is the requirement of an ultraviolet (UV) excitation source not commonly provided on standard flow cytometers.

View Article and Find Full Text PDF

Background: Fabry disease is an X-linked lysosomal storage disorder due to a deficiency of α-galactosidase A (α-gal A) activity. Our goal was to correct the enzyme deficiency in Fabry patients by transferring the cDNA for α-gal A into their CD34+ hematopoietic stem/progenitor cells (HSPCs). Overexpression of α-gal A leads to secretion of the hydrolase; which can be taken up and used by uncorrected bystander cells.

View Article and Find Full Text PDF

Mesenchymal stromal cells (MSCs) isolated from tissues such as bone marrow, cord, cord blood, etc., are frequently used as feeder layers to expand hematopoietic stem/ progenitor cells (HSCs/HSPCs) in vitro. They are also co-infused with the HSCs to improve the efficacy of transplantation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!