Assaying the Posttranslational Arginylation of Proteins in Cultured Cells.

Methods Mol Biol

Departamento de Química Biológica, Facultad de Ciencias Químicas, Centro de Investigaciones en Química Biológica de Córdoba, CIQUIBIC, (UNC-CONICET), Universidad Nacional de Córdoba (X5000HUA), Córdoba, Argentina.

Published: May 2016

To evaluate the posttranslational arginylation of proteins in vivo, we describe a protocol for studying the (14)C-Arg incorporation into proteins of cells in culture. The conditions determined for this particular modification contemplate both the biochemical requirements of the enzyme ATE1 and the adjustments that allowed the discrimination between posttranslational arginylation of proteins and de novo synthesis. These conditions are applicable for different cell lines or primary cultures, representing an optimal procedure for the identification and the validation of putative ATE1 substrates.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-4939-2935-1_7DOI Listing

Publication Analysis

Top Keywords

posttranslational arginylation
12
arginylation proteins
12
assaying posttranslational
4
proteins
4
proteins cultured
4
cultured cells
4
cells evaluate
4
evaluate posttranslational
4
proteins vivo
4
vivo describe
4

Similar Publications

Identification of an Intrinsically Disordered Region (IDR) in Arginyltransferase 1 (ATE1).

Biochemistry

December 2024

Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, Maryland 21250, United States.

Arginyltransferase 1 (ATE1) catalyzes arginylation, an important posttranslational modification (PTM) in eukaryotes that plays a critical role in cellular homeostasis. The disruption of ATE1 function is implicated in mammalian neurodegenerative disorders and cardiovascular maldevelopment, while posttranslational arginylation has also been linked to the activities of several important human viruses such as SARS-CoV-2 and HIV. Despite the known significance of ATE1 in mammalian cellular function, past biophysical studies of this enzyme have mainly focused on yeast ATE1, leaving the mechanism of arginylation in mammalian cells unclear.

View Article and Find Full Text PDF

Cell death regulation is essential for stress adaptation and/or signal response. Past studies have shown that eukaryotic cell death is mediated by an evolutionarily conserved enzyme, arginyltransferase1 (Ate1). The downregulation of Ate1, as seen in many types of cancer, prominently increases cellular tolerance to a variety of stressing conditions.

View Article and Find Full Text PDF

Arginyltransferase 1 (ATE1) catalyzes arginylation, an important post-translational modification (PTM) in eukaryotes that plays a critical role in cellular homeostasis. The disruption of ATE1 function is implicated in mammalian neurodegenerative disorders and cardiovascular maldevelopment, while post-translational arginylation has also been linked to the activities of several important human viruses such as SARS-CoV-2 and HIV. Despite the known significance of ATE1 in mammalian cellular function, past biophysical studies of this enzyme have mainly focused on yeast ATE1, leaving the mechanism of arginylation in mammalian cells unclear.

View Article and Find Full Text PDF

The extensive protein production in virus-infected cells can disrupt protein homeostasis and activate various proteolytic pathways. These pathways utilize post-translational modifications (PTMs) to drive the ubiquitin-mediated proteasomal degradation of surplus proteins. Protein arginylation is the least explored PTM facilitated by arginyltransferase 1 (ATE1) enzyme.

View Article and Find Full Text PDF

-Synuclein (-Syn) aggregation in Lewy bodies and Lewy neurites has emerged as a key pathogenetic feature in Parkinson's disease, dementia with Lewy bodies, and multiple system atrophy. Various factors, including posttranslational modifications (PTMs), can influence the propensity of -Syn to misfold and aggregate. PTMs are biochemical modifications of a protein that occur during or after translation and are typically mediated by enzymes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!